Biosensors and Bioelectronics (LBB)Open OpportunitiesIn this project, you will explore how cells generate mechanical forces using confocal traction force microscopy (cTFM). The project combines experimental techniques, such as cell culturing, quantum dot array printing, and live-cell confocal imaging, together with computational data analysis using the open-source tool Cellogram. By growing cells on deformable substrates and tracking the displacement of fluorescent quantum dots, students will quantify the traction forces that individual cells exert on their environment. - Biology, Engineering and Technology, Information, Computing and Communication Sciences
- Bachelor Thesis, Master Thesis, Semester Project
| Are you interested in what a cell look like in nanometer scale? Do you want to see how the cell behaves in real time?
Scanning ion conductance microscopy (SICM) is the non-contact SPM technology to image live cells based on glass capillaries with a nanometric aperture. It applies a voltage and measures the ionic current flowing through the pipette above the sample in the buffer solution: the recorded current represents the feedback signal to measure the topography of the sample. This project aims to characterize a state of the art high-speed SICM to enable time-resolved live cell imaging, and do the live cell imaging on human primary keratinocytes to study the related disease. - Biomedical Engineering, Electrical and Electronic Engineering, Information, Computing and Communication Sciences, Manufacturing Engineering, Mechanical Engineering, Nanotechnology
- Master Thesis
| The solid-state nanopore has become a powerful tool for label-free single-molecule detection, characterising DNA and RNA structures, with recent work demonstrating the ability to detect protein structure information. Studying single-cells requires us to push this protein characterisation further, with the interfacial nanopore one approach to achieving this.
In this project, you would simulate and compare with empirical data the properties of the solid-state interfacial nanopore for single-molecule detection and characterisation. - Biophysics
- Bachelor Thesis, Master Thesis, Semester Project
| In this project, you will work on the design and development of a micro-/nanomanipulator that is integrated into a cutting-edge single-molecule sensor. This system will enable precise positioning of the sensor chip and dynamic size control of the nanopore, critical for detecting protein modifications of varying sizes. This project offers an excellent opportunity for students interested in nanotechnology, hardware development, and biomolecular analysis to gain interdisciplinary experience and make meaningful contributions to advancing nanopore sensing technology. - Biomedical Engineering, Biosensor Technologies, Computer Hardware, Nanotechnology
- Bachelor Thesis, Master Thesis, Semester Project
| In this project, you will focus on the design and development of a custom hardware controller for piezoelectric actuators, enabling precise control of a micro-/nanomanipulator integrated into a cutting-edge nanopore sensor. The controller will provide high-resolution actuation voltages (up to 120 V) with closed-loop feedback for precise piezo actuation, critical for dynamic size control of interface nanopores. This project offers an exciting opportunity to combine hardware design, control systems, and nanotechnology in a real-world application. - Engineering and Technology
- Bachelor Thesis, Master Thesis, Semester Project
| In this project, you will have the opportunity to contribute to the development and optimization of a single-molecule sensor designed for the detection, identification, and analysis of important biomolecules such as DNA and proteins. The sensor technology is built upon the principles of microfluidics, nanofabrication, and machine-learning data analysis. It is an excellent fit for students who possess skills and a strong interest in these fields and are eager to engage in an interdisciplinary project with significant potential impact. - Biology, Chemistry, Engineering and Technology, Medical and Health Sciences, Physics
- Master Thesis
|
|