Max Planck ETH Center for Learning SystemsAcronym | MPG ETH CLS | Homepage | http://learning-systems.org/ | Country | [nothing] | ZIP, City | | Address | | Phone | | Type | Alliance | Current organization | Max Planck ETH Center for Learning Systems | Members | |
Open OpportunitiesMaster thesis on novel devices and tools for both valve repair and replacement at Harvard Medical School - Engineering and Technology, Medical and Health Sciences
- Master Thesis
| We are developing robotic catheters for heart valve repair and for treatment of arrythmias. - Engineering and Technology, Medical and Health Sciences
- Master Thesis
| Three-dimensional medical imaging techniques such as Computed Tomography (CT) and MRI are indispensable in modern clinical workflows. CT utilizes X-rays acquired from multiple angles to reconstruct detailed volumetric patient anatomy data. Due to the harmful effects of ionizing radiation, especially in vulnerable populations such as infants, it is critical to minimize radiation exposure while maintaining diagnostic image quality.
Optimizing CT parameters requires systematic studies, yet direct experimentation on infants is ethically and medically unacceptable. This project aims to develop a novel infant head phantom that accurately replicates the radiological properties of an infant’s head. The phantom will serve as a testbed for CT imaging studies, enabling the optimization of scan parameters that balance minimal radiation exposure with high-quality image acquisition tailored for pediatric neuroimaging.
- Biomedical Engineering, Manufacturing Engineering, Materials Engineering, Mechanical and Industrial Engineering
- ETH Zurich (ETHZ), Master Thesis, Semester Project
| Enable Birds-Eye-View perception on autonomous mobile robots for human-like navigation. - Computer Vision, Intelligent Robotics, Neural Networks, Genetic Alogrithms and Fuzzy Logic, Pattern Recognition, Photogrammetry and Remote Sensing
- ETH Zurich (ETHZ), Master Thesis
| Elevate semantic scene graphs to a new level and perform semantically-guided navigation and interaction with real robots at The AI Institute. - Computer Vision, Engineering and Technology, Intelligent Robotics, Neural Networks, Genetic Alogrithms and Fuzzy Logic, Pattern Recognition
- ETH Zurich (ETHZ), Master Thesis
| Functional traits describe biophysically relevant properties of plants and form an important basis for understanding ecosystem dynamics and the Earth system. Planttraits.earth has recently produced global high-resolution maps of many plant traits (some of which have never before been mapped globally), by combining field data from plant scientists, crowd-sourced data from citizen scientists, and remote sensing imagery. The present project will develop methods to improve those maps and bring plant trait mapping to the next level. - Ecology and Evolution, Information, Computing and Communication Sciences, Photogrammetry and Remote Sensing
- Master Thesis, Semester Project
| This thesis investigates the use of generative diffusion models for estimating Digital Surface Models (DSMs) with at least relative surface height from a single RGB image. While DSMs are traditionally derived from stereo imagery, monocular estimation offers a lightweight alternative for applications where only single-view input is available. Building on recent advances in monocular depth estimation, such as DepthAnythingV2 and Marigold, this work explores whether diffusion-based approaches can effectively bridge the gap between relative depth predictions and real-world surface structure. - Information, Computing and Communication Sciences, Photogrammetry and Remote Sensing
- Bachelor Thesis, Master Thesis, Semester Project
| This project focuses on developing autonomous robots for synchronized performances on water. Equipped with kinetic water fountains, RGB lighting, and ultrasonic mist generators, the robots are designed to execute planned choreographies. The system utilizes robotics control, wireless communication, and positioning technologies to coordinate movements, and payload activation, facilitating complex pattern generation and synchronization. The objective is to advance the application of distributed robotic systems in creating structured and cohesive visual displays on water. - Arts, Engineering and Technology, Information, Computing and Communication Sciences
- Bachelor Thesis, Master Thesis, Semester Project
| In this thesis, you will contribute to the Autonomous River Cleanup (ARC) by helping develop SARA, a bridge-mounted, camera-based system for monitoring river waste. Your focus will be on modeling the system’s power dynamics to determine the ideal battery and solar panel size, and balancing runtime throughout the day with overall the system size and weight. If time allows, you will also validate your findings with tests on the real hardware. - Engineering and Technology
- Bachelor Thesis, Semester Project
| In this thesis, you will work on SARA, a bridge-mounted, smartphone-based system for detecting and monitoring river waste. The focus will be on selecting lightweight detection and classification models suitable for smartphones and exploring domain adaptation techniques to improve performance across different locations with minimal retraining. Your work will build on previous research at ARC and current literature to develop solutions that balance model robustness and computational efficiency. - Engineering and Technology
- Semester Project
|
|