Online Feedback optimization (OFO) is a beautiful control method to drive a dynamical system to an
optimal steady-state. By directly interconnecting optimization algorithms with real-time system measurements, OFO guarantees robustness and efficient operation, yet without requiring exact knowledge
of the system model. The goal of this project is to develop faster OFO schemes for congestion control
on freeways, in particular by leveraging the monotonicity properties of traffic networks. - Engineering and Technology
- Master Thesis
|
We invite applications for a Master's thesis / semester project that focuses on the fabrication of microrobots with custom shapes. Using our developed droplet printing technique, this project will explore how different microrobot shapes, created by different magnetic fields and materials, influence their control behaviors in blood vessels. This research aims to advance biomedical technologies, particularly in targeted drug delivery and minimally invasive procedures. - Biomedical Engineering, Colloid and Surface Chemistry, Materials Engineering, Nanotechnology, Printing Technology
- ETH Zurich (ETHZ), Master Thesis, Semester Project, Student Assistant / HiWi
|
The purpose of this project is to enhance an existing
robotic platform capable of autonomously delivering
injections into the human eye. Rather than starting
from zero, the student will build upon substantial prior
research. The project’s primary focus is on industrial
design—making the system both visually appealing
and suitable for clinical settings. This includes
collaborating with external manufacturers for casting
and production, resulting in a polished, user-friendly
device for healthcare professionals. In addition, the
student will do some coding in Python (specifically for
motion planning) to run experiments on porcine and
mock-eyes using the updated design. - Engineering and Technology
- ETH Zurich (ETHZ)
|
This Master's thesis/semester project focuses on the microfluidic fabrication of micromachines with multi-environmental responsiveness. The aim is to develop micromachines capable of adapting to various environmental cues. We envision that these micromachines will be used for complex tasks in biomedical and environmental applications. - Chemistry, Engineering and Technology, Medical and Health Sciences
- ETH Zurich (ETHZ), Internship, Master Thesis, Semester Project, Student Assistant / HiWi
|
Event cameras are an exciting new technology enabling sensing of highly dynamic content over a broad range of illumination conditions. The present thesis explores novel, sparse, event-driven paradigms for detecting structure and motion patterns in raw event streams. - Engineering and Technology
- Master Thesis
|
Experiment with Gaussian Splatting based map representations for highly efficient camera tracking and simultaneous change detection and map updating. Apply to different exteroceptive sensing modalities. - Engineering and Technology
- Master Thesis
|
This project consists of reconstructing soft object along with their appearance, geometry, and physical properties from image data for inclusion in reinforcement learning frameworks for manipulation tasks. - Engineering and Technology
- Master Thesis
|
Push the limits of arbitrary online video reconstruction by combining the most recent, prior-supported real-time Simultaneous Localization And Mapping (SLAM) methods with automatic supervision techniques. - Engineering and Technology
- Master Thesis
|
Computing, time, and energy requirements of recent neural networks have demonstrated dramatic increase over time, impacting on their applicability in real-world contexts. The present thesis explores novel ways of implementing neural network implementations that will substantially reduce their computational complexity and thus energy footprint. - Engineering and Technology
- Master Thesis
|
In the BIROMED-Lab we have been developing an endoscopic system for safer neurosurgeries with inspiration from human finger anatomy. Its two degrees of freedom allow the endoscope to investigate areas of the brain that would be inaccessible with standard rigid endoscopes. Thanks to springs in the transmission between the motors and the movable endoscope tip, the interaction forces between the instrument and the brain tissue can be reduced. Furthermore the interaction forces can be estimated by measuring the deflection of the spring. To make the telemanipulation of the endoscope safer and more intuitive for the surgeon, force feedback was also implemented. - Biomedical Engineering
- Master Thesis
|