Ferguson Group / Laboratory for Orthopaedic TechnologyOpen OpportunitiesBackground:
Lower back pain is one of the most prevalent health issues in Switzerland, with severe socio-economic consequences and a leading cause of reduced work performance. Approximately 20% of spinal fusion surgeries performed using off-the-shelf implants result in the surgical outcome being compromised post-operatively, often requiring one or more revision surgeries to address the associated pain.
The Laboratory of Orthopedic Technology has recently developed a novel spinal implant using topology optimization, which is currently undergoing a feasibility study for clinical applications.
We are seeking a master’s student who is passionate about medical devices and mechanical design and testing to join us for a semester project or master thesis. In this role, you will gain insight into the spinal surgery process, receive input from surgeons, and contribute to the mechanical design and testing of the implant.
Objectives:
• Perform the CT scan on animal vertebrae
• Evaluate the influence of implant placement/location variability
• Mechanical testing on the implant
• Develop surgical tools if needed
Your Profile:
• Strong knowledge in mechanical design and drawing skills.
• Hands-on and detail-oriented.
• Experience with SolidWorks or Fusion 360, as well as Python or Matlab.
Timeframe:
Spring semester in 2025
- Orthopaedics
- Master Thesis, Semester Project
| Understanding the differences in spine kinematics between patients with lumbar spinal stenosis and those with healthy spines, along with the implications for spinal loading, could shed light on the pathophysiology of this disease and contribute to the development of more effective treatment and rehabilitation strategies. To estimate spinal loads, a novel full-body musculoskeletal model developed in AnyBody Modeling System will be used. This model will be customized to reflect subject-specific spinal alignment and will be driven by kinematic data obtained from in vivo motion-capture measurements. Inverse dynamics simulations of patient-specific spinal postures and forward flexion trials will be performed to estimate the corresponding loads. - Biomechanics
- ETH Zurich (ETHZ), Master Thesis
| Lumbar spinal stenosis (LSS) is a condition characterized by the narrowing of the lumbar spinal canal, resulting in compression of the nerve roots or cauda equina. Patients with LSS often exhibit altered spinal kinematics and compensatory movement patterns, which can increase paraspinal muscle activity and segmental loads. This study aims to estimate the spinal loads in LSS patients using an advanced full-body musculoskeletal model within the AnyBody Modeling System, incorporating patient-specific motion-capture data. Gaining a deeper understanding of the differences in spinal kinematics between LSS patients and healthy individuals, and their effects on spinal loading, could inform more effective treatment and rehabilitation strategies. - Biomechanical Engineering
- Master Thesis
| The Laboratory of Orthopedic Technology has recently developed a novel joint implant and is undergoing optimization of the manufacturing process. We are looking for a master's student who is passionate about medical devices and mechanical design to join us for a semester project.
Objectives:
• Design different molds for material casting using SolidWorks or Fusion 360.
• Optimize implant design using matlab or Python.
• Mechanical testing of the implant including fatigue test.
Your Profile:
• Strong knowledge in mechanical design and drawing skills.
• Hands-on and detail-oriented.
• Experience with SolidWorks or Fusion 360, as well as Python or Matlab. - Biomechanical Engineering
- ETH Zurich (ETHZ), Semester Project
| The Laboratory of Orthopedic Technology at ETH Zurich is currently optimizing the manufacturing process for a novel joint implant. We are looking for a master's student who is passionate about medical devices and polymer science to join our team for a semester project or master's thesis.
Project Focus: The selected candidate will work on optimizing the performance of a hydrogel material that is a key component of the cartilage replacement implant. The project will involve:
• Investigating polymer synthesis and formulation techniques to enhance hydrogel performance.
• Developing testing protocols to evaluate the hydrogel’s effectiveness in mimicking natural cartilage behavior.
- Organic Chemical Synthesis
- ETH Zurich (ETHZ), Master Thesis, Semester Project
|
|