Institute for Biomedical EngineeringOpen OpportunitiesThe resolution of clinical CT images is not sufficient to characterize the complex network of trabecular bone. The student will develop a Super Resolution pipeline to enhance CT images and enable a characterization of the microarchitecture of human bone. - Biomechanical Engineering, Image Processing, Materials Engineering, Mechanical Engineering, Medical Physics
- ETH Zurich (ETHZ), Master Thesis
| Scanning ion conductance microscopy (SICM) is the non-contact SPM technology to image live cells based on glass capillaries with a nanometric aperture. It applies a voltage and measures the ionic current flowing through the pipette above the sample in the buffer solution: the recorded current represents the feedback signal to measure the topography of the sample. In collaboration with Prof. Fantner at EPFL, this project aims to assemble a state of the art high-speed SICM to enable time-resolved live cell imaging. - Biomedical Engineering, Electrical and Electronic Engineering, Mechanical Engineering, Nanotechnology, Signal Processing
- ETH Zurich (ETHZ), Master Thesis
| Pemphigus vulgaris (PV) is a unique group of autoimmune diseases. Researches have demonstrated that antibody-induced disruption of Dsg3 transadhesion initiates a signaling response in basal keratinocytes followed by loss of tissue integrity. The complexity of morphogenesis and tissue regeneration implies the existence of a transcellular communication network in which individual cells sense the environment and coordinate their biological activity in time and space.
To understand the fascinating ability of tissue self-organization, comprehensive study of biophysical properties (cell topography and bioelectricity) in combination with the analysis of biochemical networks (signaling pathways and genetic circuits) is required.
Together with the University of Bern and University of Lübeck, we aim to utilize the tools to study the topography and electrophysiology (cell potential, ion channel recording, localized ion detection, charges) of HPEK cells (human primary keratinocytes cells) to unravel the signaling pathways of the disease. We utilize optical imaging (fluorescence dyes) and biosensing tools (including the state of the art hs-SICM and electrical FluidFM setup) to study HPEK cells upon desmosome disruption.
- Biology, Biomedical Engineering, Chemistry, Electrical and Electronic Engineering, Interdisciplinary Engineering, Medical and Health Sciences
- Bachelor Thesis, Lab Practice, Master Thesis, Semester Project, Summer School
| The remarkable complexity of morphogenesis and tissue regeneration implies the existence of a transcellular communication network in which individual cells sense the environment and coordinate their biological activity in time and space. To understand the fascinating ability of tissue self-organization, comprehensive study of biophysical properties (cellular nanomechanics such as tension forces and bioelectromagnetics) in combination with the analysis of biochemical networks (signaling pathways and genetic circuits) is required.
In this framework we are investigating the unacknowledged key role of Desmoglein 3 (Dsg3) as a receptor involved in mechanosensing, capable of initiating a signaling response in the transcellular communication network, which results in stem cell fate conversion, plasticity and tissue repair.
Our goal is to apply innovative Fluidic Force Microscopy to measure altered biophysical parameters upon disruption of Dsg3 transadhesion such as cell stiffness, cell-cell adhesion, cell surface charges and electric potentials. Together with the University of Bern and University of Lübeck we are further investigating how these biophysical changes relate to transcriptomic, epigenomic and proteomic response circuits to ultimately infer biophysical and biochemical circuits involved in Dsg3 signaling.
- Biochemistry and Cell Biology, Biomedical Engineering, Medical and Health Sciences, Physics
- Bachelor Thesis, ETH Zurich (ETHZ), Master Thesis, Semester Project
| Glioblastoma, the most aggressive brain tumour in adults, interacts with the surrounding healthy brain to promote further cancer growth. However, it is challenging to study these interactions directly in the human brain. In response, we are developing a platform that allows us to study this phenomenon in more detail, with a particular focus on unravelling how cancer alters the electrical activity of brain cells. - Central Nervous System, Clinical Pharmacology and Therapeutics, Electrical Engineering, Oncology and Carcinogenesis
- Internship, Master Thesis, Semester Project
| The aim of this project is to develop an approach based on physics-based graph neural networks to generate digital twins from PC-MRI data. - Artificial Intelligence and Signal and Image Processing, Biomedical Engineering, Fluidization and Fluid Mechanics, Turbulent Flows
- Master Thesis
| Non-invasive, focal drug delivery in a controlled, reliable manner can lead to breakthroughs in the treatment of brain disorders. We recently developed a unique technology based on focused ultrasounds that allows for the efficient delivery of small molecules to specific brain targets. Yet, ensuring safe and effective transmission of ultrasound energy is challenging in the presence of highly-aberrating media like the skull. This project will involve the development of closed-loop algorithms and hardware for the adaptive, real-time control of ultrasound intensities during therapy. This will ensure maximally-effective drug delivery while minimizing potential harm to the target tissue. - Engineering and Technology, Medical and Health Sciences
- Master Thesis, Semester Project
| The aim of the project is to investigate the benefits, requirements and drawbacks of physics informed neural networks in the context of personalised cardiac and cardiovascular models - Biomechanical Engineering, Clinical Engineering, Computation Theory and Mathematics, Fluidization and Fluid Mechanics, Neural Networks, Genetic Alogrithms and Fuzzy Logic, Simulation and Modelling
- Master Thesis
| The project focuses exploiting generative AI to build synthetic numerical phantom for cardiac anatomy and function suitable for representing population variability. - Biomechanical Engineering, Information, Computing and Communication Sciences
- Master Thesis
| The aim of this project is to develop a database and web-interface for the X-ray micro-fabrication team at PSI and ETHZ to track realized pieces, fabrication protocols and characterization of the products. - Computer Software, Information Systems
- Master Thesis
|
|