ETH Competence Center - Competence Center for Rehabilitation Engineering and Science (RESC)Acronym | RESC | Homepage | https://resc.ethz.ch/ | Country | Switzerland | ZIP, City | | Address | | Phone | | Type | Academy | Parent organization | ETH Zurich | Current organization | ETH Competence Center - Competence Center for Rehabilitation Engineering and Science (RESC) | Child organizations | | Members | |
Open OpportunitiesThis thesis aims to apply explainable AI techniques to analyze time series data from the Virtual Peg Insertion Test (VPIT), uncovering additional metrics that describe upper limb impairments in neurological subjects, such as those with stroke, Parkinson's disease, and multiple sclerosis. By preserving the full dimensionality of the data, the project will identify new patterns and insights to aid in understanding motor dysfunctions and support rehabilitation.
- Engineering and Technology, Information, Computing and Communication Sciences, Medical and Health Sciences
- Master Thesis
| This thesis will compare the Virtual Peg Insertion Test (VPIT) with the Inverse3 haptic device by Haply to evaluate its effectiveness as a tool for assessing upper limb function. The focus will be on comparing both the hardware features and software capabilities to determine if the Inverse3 can serve as a valid alternative to VPIT for clinical assessments. - Engineering and Technology, Information, Computing and Communication Sciences, Medical and Health Sciences
- Collaboration, Master Thesis
| With over 14 million stroke cases annually, the global neurorehabilitation market presents a multi-billion-dollar opportunity for innovative solutions addressing motor recovery. The Rehabilitation Engineering Laboratory (RELab) at ETH Zurich is developing a revolutionary closed-loop neurorehabilitation device that leverages motion tracking and non-invasive brain stimulation to transform stroke rehabilitation. This project aims to develop a sophisticated financial model and a strategic business plan to propel the device to market leadership. The student will conduct market analysis, build financial projections, and craft a compelling business strategy, focusing on pricing, reimbursement, and investor engagement. By delivering investor-ready materials and a scalable commercialization plan, this work will position the device for rapid market entry and long-term success, offering the student a unique opportunity to blend business strategy, entrepreneurship, and healthcare innovation. - Finance Economics, Neurosciences, Rehabilitation Engineering, Small Business Management
- Bachelor Thesis, Internship, Master Thesis, Semester Project
| 3D printing has revolutionized the way objects are designed and fabricated across a wide range of industries—from aerospace and automotive to healthcare and consumer products. It enables rapid prototyping, complex geometries, customized solutions, and recently bioprinting of living tissues that are difficult or impossible to achieve with traditional manufacturing methods. Every 3D printing method has certain drawbacks, often related to resolution, material compatibility, speed, or scalability. The ongoing search for new approaches aims to overcome these challenges and expand the potential of the technology. We have developed and demonstrated a proof of concept for a novel printing approach, and are now seeking to advance it into a fully functional prototype. - Biomedical Engineering, Printing Technology
- Master Thesis, Semester Project
| TLDR: Improving navigation capabilities of ANYmal - RL is simulation - optimizing learning progress. - Computer Hardware, Computer Perception, Memory and Attention, Computer Vision, Electrical Engineering, Intelligent Robotics, Robotics and Mechatronics
- Master Thesis, Semester Project
| Diffusion models (DDPMs) have revolutionised generative modelling, surpassing GANs in images, advancing audio synthesis, and enabling de-novo protein design. Yet progress on time series lags behind early adversarial work. Recent studies highlight the benefits of spectral biases - FourierFlow and frequency-domain DDPMs.
In parallel, diffusion in the wavelet domain has emerged for images, offering a multi-resolution view well-suited to non-stationary signals. Wavelets capture localised, scale-dependent features, making them attractive for domains from finance to climate and biomedical data such as ECGs.
This project proposes the first DDPM framework operating directly in the wavelet domain for time series, aiming to improve generalisation, interpretability, and robustness across diverse sequential tasks. - Artificial Intelligence and Signal and Image Processing, Statistics
- ETH Zurich (ETHZ), Master Thesis
| This project uses Visual Language Models (VLMs) for high-level planning and supervision in construction tasks, enabling task prioritization, dynamic adaptation, and multi-robot collaboration for excavation and site management.
prioritization, dynamic adaptation, and multi-robot collaboration for excavation and site management - Information, Computing and Communication Sciences
- Master Thesis, Semester Project
| Recent advancements in AI, particularly with models like Claude 3.7 Sonnet, have showcased enhanced reasoning capabilities. This project aims to harness such models for excavation planning tasks, drawing parallels from complex automation scenarios in games like Factorio. We will explore the potential of these AI agents to plan and optimize excavation processes, transitioning from simulated environments to real-world applications with our excavator robot. - Engineering and Technology
- Master Thesis, Semester Project
| Advancements in sensor technology, low-power mixed-signal/RF circuits, and Wireless Sensor Networks (WSNs) have enabled the creation of compact, cost-effective solutions for healthcare applications. A notable development in this field is the Body Sensor Network, which is designed to monitor the human body for healthcare purposes.
- Biomedical Engineering, Electrical and Electronic Engineering
- Bachelor Thesis, Internship, Semester Project
| Enable Birds-Eye-View perception on autonomous mobile robots for human-like navigation. - Computer Vision, Intelligent Robotics, Neural Networks, Genetic Alogrithms and Fuzzy Logic, Pattern Recognition, Photogrammetry and Remote Sensing
- ETH Zurich (ETHZ), Master Thesis
|
|