ETH Competence Center - Competence Center for Rehabilitation Engineering and Science (RESC)Acronym | RESC | Homepage | https://resc.ethz.ch/ | Country | Switzerland | ZIP, City | | Address | | Phone | | Type | Academy | Parent organization | ETH Zurich | Current organization | ETH Competence Center - Competence Center for Rehabilitation Engineering and Science (RESC) | Child organizations | | Members | |
Open OpportunitiesJoin a dynamic research team at the intersection of biomechanics, tissue engineering, and cell biology. This project offers hands-on training in state-of-the-art methods to investigate how tendon tissue responds to injury, disease processes, and mechanical stimulation during exercise-based therapy. - Biomedical Engineering
- Master Thesis
| Controlling fluid flow is essential in various natural and engineering systems, with geometry playing a fundamental role in shaping fluid behavior. However, the interaction between geometry and flow behavior remains a complex phenomenon, primarily governed by the flow regime and fluid material properties.
Certain geometries, whether naturally occurring or engineered, induce direction-dependent flow resistance, causing variations in velocity and flow rate in opposite directions. One well-known example of such engineered geometries is the Tesla valve—a passive device without moving parts, designed to create asymmetric flow resistance, particularly at high Reynolds numbers. This structure acts like a fluidic diode, offering greater resistance to flow in one direction by generating turbulent vortices and flow separations while allowing smoother movement in the opposite direction. This effect is quantified by diodicity, which represents the ratio of pressure drop in the reverse direction to that in the forward direction, providing a measure of the valve's asymmetric resistance. However, this direction dependence is limited at lower velocities.
We have designed two sets of geometries that effectively induce directional flow resistance within high and low fluid flow velocities. This Master’s thesis project aims to experimentally investigate the impact of different flow obstruction designs on direction-dependent resistance in rectangular channels and semicircular arc segments. The student will, together with their direct supervisor, design and construct an experimental setup for the reliable measurement of flow and diodicity. This project offers an excellent opportunity to gain expertise in fluid dynamics, experimental testing, numerical modeling, and additive manufacturing, with applications in biomedical systems.
Students with a background in mechanical engineering, fluid dynamics, or related fields are encouraged to apply. Prior experience with COMSOL Multiphysics is beneficial but not mandatory.
- Mechanical Engineering
- Master Thesis
| We are looking for a research assistant who is skilled at data collection, cleaning, matching and programming. Please see details in the attachment. - Programming Languages
- Student Assistant / HiWi
| Join us in revolutionizing brain imaging technologies and make it accessible for everyday use. Functional near-infrared spectroscopy (fNIRS) is an emerging technology that enables cost-effective and precise brain measurements, helping to improve neurotherapies and brain health. - Electrical Engineering, Mechanical and Industrial Engineering, Neurology and Neuromuscular Diseases, Neurosciences, Signal Processing
- Internship
| In this project, we aim to develop a novel PCB integrating a powerful PULP chip, i.e., the GAP9, and event-based sensor, the Prophesee Genx320, and a RGB camera, the Himax HB0360 to enable multi modal AI-driven perception aboard nano-drones - Integrated Circuits
- Bachelor Thesis, Master Thesis, Semester Project
| This thesis develops an automated onboard waste quantification system for a maritime waste collection vessel, leveraging computer vision with continual learning and domain adaptation to replace manual counting of floating waste. Evaluated under real-world maritime conditions, the system aims to improve waste management in the South East Asian Sea. - Engineering and Technology
- Master Thesis
| In this project, we focus on continuous and quantitative monitoring of activities of daily living (ADL) in SCI individuals with the goal of identifying cardiovascular events and PI-related risk behaviors.
ADLs specific to SCI patients and their lifestyles shall be discussed and narrowed down in the scope of this work, therefore an autonomous camera-based system is proposed to classify ADLs.
The Current work builds on a previous project where a SlowFast network [1] was trained to identify SCI-specific classes and we aim to further improve the classification and temporal resolution for transferring to wearables' time-series data. - Computer Vision, Health Information Systems (incl. Surveillance), Intelligent Robotics, Knowledge Representation and Machine Learning, Neural Networks, Genetic Alogrithms and Fuzzy Logic, Pattern Recognition
- Bachelor Thesis, Course Project, ETH for Development (ETH4D) (ETHZ), ETH Zurich (ETHZ), Internship, Master Thesis, Semester Project
| Osteoarthritis (OA) presents a significant challenge in healthcare, necessitating innovative solutions to alleviate pain, enhance mobility. This thesis documents the research and development journey of an OA knee orthosis within the Spinal Cord and Artificial Intelligence Lab (SCAI-Lab) at ETH Zurich.
This thesis is a close collaboration between the ORTHO-TEAM Group and the SCAI-Lab at ETH Zurich. The collaboration offers a unique exchange of expertise and resources between industry and academia. Together, we aim to make meaningful progress in the field of and empower students to make valuable contributions to their academic pursuits.
- Biomechanics, Biomedical Engineering
- ETH Zurich (ETHZ), Master Thesis
| Our goal is to establish a heterocellular 3D printed bone organoid model comprising all major bone cell types (osteoblasts, osteocytes, osteoclasts) to recapitulate bone remodeling units in an in vitro system. The organoids will be produced with the human cells, as they could represent human pathophysiology better than animal models, and eventually could replace them. These in vitro models could be used in the advancement of next-generation personalised treatment strategies. Our tools are different kinds of 3D bioprinting platforms, bio-ink formulations, hydrogels, mol-bioassays, and time-lapsed image processing of micro-CT scans. - Biomaterials, Biomechanical Engineering, Cell Development (incl. Cell Division and Apoptosis), Cellular Interactions (incl. Adhesion, Matrix, Cell Wall), Polymers
- Bachelor Thesis, ETH Zurich (ETHZ), Internship, Master Thesis, Semester Project
| In over 100 years, the remarkable ability of bone to adapt to its mechanical environment has been a source of scientific fascination. Bone regeneration has been shown to be highly dependent on the mechanical environment at the fracture site. It has been demonstrated that mechanical stimuli can either accelerate or impede regeneration. Despite the fundamental importance of the mechanical environment in influencing bone regeneration, the molecular mechanisms underlying this phenomenon are complex and poorly understood. - Biomedical Engineering, Medical Physiology
- Bachelor Thesis, Internship, Master Thesis, Semester Project
|
|