ETH Competence Center - Competence Center for Rehabilitation Engineering and Science (RESC)Acronym | RESC | Homepage | https://resc.ethz.ch/ | Country | Switzerland | ZIP, City | | Address | | Phone | | Type | Academy | Parent organization | ETH Zurich | Current organization | ETH Competence Center - Competence Center for Rehabilitation Engineering and Science (RESC) | Child organizations | | Members | |
Open OpportunitiesThis project aims to develop a novel algorithm for tracking a person's health condition changes using daily life wearable sensor data, biosignals, and information from nearable sensors. With the Life-long-logging system, we want to provide meaningful data for medical staff and directly engage patients and their caregivers. - Engineering and Technology
- Bachelor Thesis, ETH Zurich (ETHZ), Internship, Master Thesis, Semester Project
| The StrongAge Dataset, collected over one year, provides a rich data repository from unobtrusive, contactless technologies combined with validated mood and cognition questionnaires. This project aims to uncover digital biomarkers that can transform elderly care, addressing critical research questions related to sleep, cognition, physical activity, and environmental influences. - Biomechanical Engineering, Signal Processing
- Bachelor Thesis, ETH Zurich (ETHZ), Internship, Lab Practice, Master Thesis, Semester Project, Student Assistant / HiWi
| This project explores the use of neuroevolution for optimizing control policies in legged robots, moving away from classical gradient-based methods like PPO. Neuroevolution directly optimizes network parameters and structures, potentially offering advantages in environments with sparse rewards, while requiring fewer hyperparameters to tune. By leveraging genetic algorithms and evolutionary strategies, the project aims to develop efficient controllers for complex locomotion tasks. With computational capabilities doubling approximately every two years as predicted by Moore's Law, neuroevolution offers a promising approach for scaling intelligent control systems. - Artificial Intelligence and Signal and Image Processing
- Master Thesis
| Imagine a robot that can intelligently interpret the world from above—looking at its immediate surroundings and predict how the terrain extends beyond its sensors. If the ground beneath its feet is muddy, it might infer that the meadows ahead will have a similar challenge, adjusting its path accordingly. To enable this kind of intelligent decision-making, robots need to recognize how local conditions propagate globally.
Machine learning techniques, particularly deep learning models, offer a way to automate this understanding by clustering satellite images based on visual and structural similarities. By leveraging large-scale satellite datasets, we can train models to detect regions that naturally group together based on appearance, geographic features, or correlated patterns of change.
[1] Gómez-Chova, L., Tuia, D., Moser, G. and Camps-Valls, G., 2015. Multimodal classification of remote sensing images: A review and future directions. Proceedings of the IEEE, 103(9), pp.1560-1584.
[2] https://ml-gis-service.com/index.php/2020/10/14/data-science-unsupervised-classification-of-satellite-images-with-k-means-algorithm/ - Intelligent Robotics
- Master Thesis, Semester Project
| The goal of this project is to develop a flexible electronic system based on breathable hydrogel electrodes on everyday fabric substrates for myoelectric signal detection. - Biomaterials, Electrical Engineering, Flexible Manufacturing Systems
- Master Thesis, Semester Project
| The goal of the project is to synthesize and characterize a number of small molecules capable of acting as mechanophore addition to various polymers. These polymers would then be used as wearable strain or pressure sensors. - Chemical Engineering, Chemistry, Composite Materials
- Master Thesis
| The goal of the project is to develop a cheap and disposable sensor capable of determination of iodine levels in human urine for early diagnostic purposes. - Chemistry, Engineering and Technology, Medical and Health Sciences
- Master Thesis
| The goal of the project is to test and optimize a smart sock prototype for plantar pressure measurements that was previously developed in the lab. The prototype will be optimized based on its ability to track pressure during everyday activities as a wearable device. Tests on healthy participants performing standard movements (e.g., walking, climbing stairs, etc) will be performed to compare the sock performance to a commercial gold standard smart insole system. This technology can be used for plantar pressure monitoring in diverse wearable applications ranging from healthcare to sports. - Biomedical Engineering
- Master Thesis, Semester Project
| In the tissue engineering & biofabrication lab, we have developed a new bioprinting technology that enables the production of highly anisotropic, microstructured hydrogels and facilitates the cultivation of aligned tissues such as skeletal muscle or nerves. On this basis, we are currently working towards establishing the ETH Spin-off Lumios. In a previous proof-of-concept study, we were able to show that embedding myoblasts into these scaffolds, 14 days later, led to the formation of functional mini-muscles that showed similar contractile and biochemical properties as we see in native muscle tissues. Based on these promising results, we now want to integrate these tissues into a platform that enables their culture and characterization in a multi-well plate format and makes them accessible to drug development research for muscle-related diseases like myocardial infarction necrosis, sarcopenia or Duchenne muscular dystrophy. - Engineering and Technology
- Master Thesis, Semester Project
| Human-robot collaboration is an attractive option in many industries for transporting long and heavy items with a single operator. In this project, we aim to enable HRC transportation with a non-holonomic robotic base platform by designing a compliant manipulation mechanism, inspired by systems like the Omnid Mocobots. - Intelligent Robotics, Mechanical Engineering
- ETH Zurich (ETHZ), Master Thesis
|
|