 Rehabilitation Engineering LabOpen OpportunitiesThis thesis aims to apply explainable AI techniques to analyze time series data from the Virtual Peg Insertion Test (VPIT), uncovering additional metrics that describe upper limb impairments in neurological subjects, such as those with stroke, Parkinson's disease, and multiple sclerosis. By preserving the full dimensionality of the data, the project will identify new patterns and insights to aid in understanding motor dysfunctions and support rehabilitation.
- Engineering and Technology, Information, Computing and Communication Sciences, Medical and Health Sciences
- Master Thesis
| This thesis will compare the Virtual Peg Insertion Test (VPIT) with the Inverse3 haptic device by Haply to evaluate its effectiveness as a tool for assessing upper limb function. The focus will be on comparing both the hardware features and software capabilities to determine if the Inverse3 can serve as a valid alternative to VPIT for clinical assessments. - Engineering and Technology, Information, Computing and Communication Sciences, Medical and Health Sciences
- Collaboration, Master Thesis
| Join our research project focused on analysing complex neurophysiological data collected during non-invasive brain stimulation experiments. This project aims to optimise brain stimulation protocols for future stroke rehabilitation by investigating neural responses to various stimulation parameters. The data includes electrocardiogram (ECG), electroencephalogram (EEG), photoplethysmography (PPG), inertial measurement unit (IMU) readings, pupilometry, and galvanic skin response (GSR). We aim to model brain states based on these measurements to define brain circuitry outcomes from stimulation and movement interactions, using advanced techniques like connectivity-based biomarkers. This modeling will help generalise findings to broader brain states, such as valence, attention, and stress. - Applied Statistics, Biological Mathematics, Neurosciences, Simulation and Modelling
- Master Thesis
|
|