Our goal is to establish a heterocellular 3D printed bone organoid model comprising all major bone cell types (osteoblasts, osteocytes, osteoclasts) to recapitulate bone remodeling units in an in vitro system. The organoids will be produced with the human cells, as they could represent human pathophysiology better than animal models, and eventually could replace them. These in vitro models could be used in the advancement of next-generation personalised treatment strategies. Our tools are different kinds of 3D bioprinting platforms, bio-ink formulations, hydrogels, mol-bioassays, and time-lapsed image processing of micro-CT scans. - Biomaterials, Biomechanical Engineering, Cell Development (incl. Cell Division and Apoptosis), Cellular Interactions (incl. Adhesion, Matrix, Cell Wall), Polymers
- Bachelor Thesis, ETH Zurich (ETHZ), Internship, Master Thesis, Semester Project
|
Design and build dexterous human-like robotic hands with us at the Soft Robotics Lab and the ETH spin-off mimic. We will explore different possibilities of developing design features and sub-systems. The developed features shall be integrated into a fully functional robotic hand and applied to solve practical manipulation challenges. - Electrical Engineering, Mechanical Engineering
- Master Thesis, Semester Project
|
The Chair of Structural Mechanics and Monitoring at ETH Zurich is seeking a prospective PhD student with expertise in areas such as knowledge engineering, knowledge management, knowledge grounding, or graph databases, and a strong interest in wind energy. - Engineering and Technology
- ETH Zurich (ETHZ), PhD Placement
|
In over 100 years, the remarkable ability of bone to adapt to its mechanical environment has been a source of scientific fascination. Bone regeneration has been shown to be highly dependent on the mechanical environment at the fracture site. It has been demonstrated that mechanical stimuli can either accelerate or impede regeneration. Despite the fundamental importance of the mechanical environment in influencing bone regeneration, the molecular mechanisms underlying this phenomenon are complex and poorly understood. - Biomedical Engineering, Medical Physiology
- Bachelor Thesis, Internship, Master Thesis, Semester Project
|
We invite applications for a Master's thesis / semester project that focuses on the fabrication of microrobots with custom shapes. Using our developed droplet printing technique, this project will explore how different microrobot shapes, created by different magnetic fields and materials, influence their control behaviors in blood vessels. This research aims to advance biomedical technologies, particularly in targeted drug delivery and minimally invasive procedures. - Biomedical Engineering, Colloid and Surface Chemistry, Materials Engineering, Nanotechnology, Printing Technology
- ETH Zurich (ETHZ), Master Thesis, Semester Project, Student Assistant / HiWi
|
The purpose of this project is to enhance an existing
robotic platform capable of autonomously delivering
injections into the human eye. Rather than starting
from zero, the student will build upon substantial prior
research. The project’s primary focus is on industrial
design—making the system both visually appealing
and suitable for clinical settings. This includes
collaborating with external manufacturers for casting
and production, resulting in a polished, user-friendly
device for healthcare professionals. In addition, the
student will do some coding in Python (specifically for
motion planning) to run experiments on porcine and
mock-eyes using the updated design. - Engineering and Technology
- ETH Zurich (ETHZ)
|
Laser ablation is mainly driven by the so-called laser-matter interaction. Especially for hard-to-machine materials like ceramics, which are gaining increasing attention in technical applications, the ablation phenomenon must be fully understood and controlled to achieve precise and selective material removal while maintaining material integrity. These materials have outstanding properties for a plurality of applications in industry; however, one is faced with the issue of finding a suitable manufacturing technique. Brittleness, hardness, and their tendency to crack lead to complications that could be addressed by the implementation of laser technology. However, experimental approaches alone are not expedient to fully handle and understand the complex phenomenon of laser ablation of ceramic multi materials. This is the motivation for introducing the first steps of simulating laser-matter interaction in multi-material ceramics within this project. - Manufacturing Engineering
- Bachelor Thesis, Internship, Master Thesis, Semester Project
|
To protect from chemical, biological, radioactive, and nuclear (CBRN) contaminants, disposable coveralls are used as personal protective clothing (PPC). In addition to its protective nature, PPC affects heat dissemination from the body, resulting in increased heat strain, which might result in reduced working performance. Therefore, new clothing material developments aim to reduce thermal load while maintaining a protective nature. We conduct a wearing trial in collaboration with an industrial partner to investigate the impact of different types of protective coveralls on heat strain during exposure to warm conditions, including resting phases and physical activity. - Exercise Physiology, Human Biophysics, Physiology, Systems Physiology, Textile Technology
- Internship, Lab Practice, Master Thesis, Semester Project
|
This Master's thesis/semester project focuses on the microfluidic fabrication of micromachines with multi-environmental responsiveness. The aim is to develop micromachines capable of adapting to various environmental cues. We envision that these micromachines will be used for complex tasks in biomedical and environmental applications. - Chemistry, Engineering and Technology, Medical and Health Sciences
- ETH Zurich (ETHZ), Internship, Master Thesis, Semester Project, Student Assistant / HiWi
|
Event cameras are an exciting new technology enabling sensing of highly dynamic content over a broad range of illumination conditions. The present thesis explores novel, sparse, event-driven paradigms for detecting structure and motion patterns in raw event streams. - Engineering and Technology
- Master Thesis
|