 ETH Competence Center for Materials and Processes (MaP)Acronym | MaP | Homepage | http://www.map.ethz.ch/ | Country | Switzerland | ZIP, City | 8093 Zürich | Address | Leopold-Ruzicka-Weg 4 | Phone | +41 44 633 37 53 | Type | Academy | Parent organization | ETH Zurich | Current organization | ETH Competence Center for Materials and Processes (MaP) | Members | |
Open OpportunitiesIf you are interested in the synthesis of nanoparticles, then you are in the right place!
Project Description: The project is centered on the microwave-assisted synthesis of tungsten oxides and the characterization of their plasmonic properties. More specifically, the effect of reaction parameters (e.g. reaction temperature, time and pressure, reactants’ concentration, …) on the nanoparticles’ structure, morphology, and optical properties will be investigated. The main characterization techniques will be UV-vis and powder-XRD spectroscopy, together with electron microscopy (SEM, TEM, …) but others will be employed based on need.
Environment: You will work in a friendly group, where helping one another is valued and cherished.
Supervision style: I will actively teach you how to synthesize and characterize materials. You will also be directly supported throughout the whole project (meaning you will not be left completely alone, and a second explanation can always be given). At the same time, it’s expected that after an introductory period you will be able to work more autonomously and give your contribution to the project.
- Ceramics, Inorganic Chemistry
- Master Thesis
| The goal of this project is to develop an image-based analysis method that enables timely evaluations. - Chemical Engineering, Computer Software, Image Processing, Interdisciplinary Engineering, Manufacturing Engineering, Materials Engineering, Mechanical and Industrial Engineering
- Bachelor Thesis, Master Thesis, Semester Project
| The goal of this project is to develop an analytical method that will enable even small material samples to be tested for their suitability for the extrusion process. - CAD/CAM Systems, Chemical Engineering, Food Engineering, Food Processing, Materials Engineering, Mechanical and Industrial Engineering
- Bachelor Thesis, Master Thesis, Semester Project
| Based on pre-study, the aim of this new thesis project is to continue the research work and further improve the die design, fabricate new die variants using AM, and experimentally test them onsite at the facilities of Planted. - CAD/CAM Systems, Chemical Engineering, Food Engineering, Food Processing, Materials Engineering, Mechanical and Industrial Engineering
- Bachelor Thesis, Master Thesis, Semester Project
| Project Summary
We’re developing a powerful new in vitro model to untangle the complex mechanical cues—osmotic pressure and substrate stiffness—that skin cells experience every day. These signals are deeply intertwined in the body, but we’re building a system to decouple and precisely control them, for the first time. Why? Because understanding how cells respond to these forces is crucial for engineering functional tissues, guiding organ regeneration, and tackling mechanobiology-driven diseases like fibrosis.
- Biochemistry and Cell Biology, Biomaterials, Diagnostic Applications
- Master Thesis
| Introduction and Background
Skin cells dynamically respond to mechanical and biochemical stimuli, which influence critical processes such as proliferation, differentiation, and migration. By understanding this interplay, mechanical and biochemical stimuli may be used in the future to facilitate the growth of skin patches, tissue formation, and organ regeneration, enabling new therapies and benefiting patients. The study of these responses, mechanobiology, requires advanced in-vitro systems to emulate physiological conditions. This project utilizes a device designed for controlled manipulation of hydrostatic pressure (0.1–1.5 kPa) and substrate stiffness (0.1–100 kPa). The system facilitates isolated and scalable experiments to analyze how the interplay of these mechanical parameters affects cell behavior. In this thesis, the student will use this system to investigate how different stimuli affect cell behavior.
- Biochemistry and Cell Biology, Biomedical Engineering, Biotechnology, Polymers
- Master Thesis
| This thesis develops an automated onboard waste quantification system for a maritime waste collection vessel, leveraging computer vision with continual learning and domain adaptation to replace manual counting of floating waste. Evaluated under real-world maritime conditions, the system aims to improve waste management in the South East Asian Sea. - Engineering and Technology
- Master Thesis
| diaxxo, a start-up from ETH Zürich, is transforming molecular diagnostics with an innovative Point-of-Care Polymerase Chain Reaction (PCR) device. Designed to accelerate and democratize access to diagnostic testing, our cutting-edge technology can be used across various fields, from human diagnostics to vet and food testing.
Our products are also tailored for use in developing countries and resource-limited settings, aiming to bring reliable diagnostics to every corner of the globe.
The company offers several projects and thesis opportunities focusing on interfacing computer and camera systems (e.g. controlling Camera Pi from ESP microcontrollers, and integrating hardware and software components to address design and automation challenges. - Chemical Engineering, Computer Hardware, Electrical Engineering, Manufacturing Engineering, Mechanical Engineering, Software Engineering
- Bachelor Thesis, Internship, Master Thesis, Semester Project
| Our goal is to establish a heterocellular 3D printed bone organoid model comprising all major bone cell types (osteoblasts, osteocytes, osteoclasts) to recapitulate bone remodeling units in an in vitro system. The organoids will be produced with the human cells, as they could represent human pathophysiology better than animal models, and eventually could replace them. These in vitro models could be used in the advancement of next-generation personalised treatment strategies. Our tools are different kinds of 3D bioprinting platforms, bio-ink formulations, hydrogels, mol-bioassays, and time-lapsed image processing of micro-CT scans. - Biomaterials, Biomechanical Engineering, Cell Development (incl. Cell Division and Apoptosis), Cellular Interactions (incl. Adhesion, Matrix, Cell Wall), Polymers
- Bachelor Thesis, ETH Zurich (ETHZ), Internship, Master Thesis, Semester Project
| Design and build dexterous human-like robotic hands with us at the Soft Robotics Lab and the ETH spin-off mimic. We will explore different possibilities of developing design features and sub-systems. The developed features shall be integrated into a fully functional robotic hand and applied to solve practical manipulation challenges. - Electrical Engineering, Mechanical Engineering
- Master Thesis, Semester Project
|
|