We are looking for a highly motivated Master student to perform the Master thesis in a collaborative project between the Multi-Scale Robotics Lab (Dr. Minghan Hu, D-MAVT) and Laboratory for Soft Materials and Interfaces (Prof. Lucio Isa & Dr. Jeremy Wong, D-MATL) at ETH Zurich. By encapsulating bacteria in microcapsules and organizing them in specific patterns, we aim to understand how these communities form and behave. This research offers an exciting opportunity to explore the dynamics of bacterial communities and contribute to the development of innovative biotechnological methods. - Biomedical Engineering, Interdisciplinary Engineering, Materials Engineering, Medical Microbiology, Microbiology
- ETH Zurich (ETHZ), Master Thesis
|
Develop and test a micro-Multiphysics Agent-Based (micro-MPA) model to simulate cellular interactions and mechanical stimuli during bone regeneration and adaptation.
- Engineering and Technology
- Bachelor Thesis, ETH Zurich (ETHZ), Master Thesis, Semester Project
|
Rapid emission reductions are needed so that the Paris Agreement's target to limit global warming to well below 2°C remains attainable. Pathways in line with this target presume a swift transition to low-carbon energy sources and – on top – the deployment of carbon dioxide removal (CDR) technologies to remove historic emissions and compensate for emissions that cannot be completely eliminated.
Direct air capture (DAC) with carbon dioxode (CO2) storage offers a scalable, permanent, and relatively easily measurable, reportable, and verifiable CDR method. However, DAC technologies are still in their infancy and high costs have hindered large-scale deployment of DAC. While there are advantages to DAC in its potential to address emissions from distributed sources, the development and deployment of DAC systems has been limited by their high cost and energy requirements.[1] Most research and development has focused on solid sorbent and liquid solvent DAC, both of which use thermal and electrical energy.
To overcome the high energy requirements of DAC systems using thermal energy, electrochemical DAC systems have been recognized as a promising alternative due to their potentially lower energy consumption at lower temperatures and pressures. [2] However, the technological maturity of electrochemical DAC systems is low, with most systems still at laboratory scale. It remains to be assessed how they compare with DAC systems using thermal energy.
References:
[1] doi.org/10.1016/j.joule.2024.02.005
[2] doi.org/10.1039/D0EE03382K - Chemical Engineering, Electrochemistry, Environmental Engineering, Finance Economics, Interdisciplinary Engineering, Mechanical and Industrial Engineering, Other Chemistry, Policy and Political Science
- ETH Zurich (ETHZ), Master Thesis
|
Nerve cuff electrodes are designed for reliable recording and stimulation of peripheral nerves, as illustrated in Figure A. This project aims to develop a wireless, self-locking cuff electrode tailored specifically for nerve stimulation, as depicted in Figure B. The student will determine a suitable biocompatible material for the electrode, design the electrode structure, and optimize its curvature using both theoretical analysis and finite element method (FEM) simulations to enhance the electrode's ability to wrap around the nerve. The student will also explore the electrode's application in stimulation in the central nervous system (CNS) and the peripheral nervous system (PNS) and investigate other potential biomedical applications. - Biomaterials, Biomechanical Engineering, Mechanical Engineering
- Master Thesis, Semester Project
|
Stereolithography (SLA) 3D printing technology offers high speed and resolution for printing smart materials that respond to external stimuli such as light, ultrasound, and magnetic fields. We have developed an SLA 3D printer equipped with a control interface implemented in Python within the ROS framework. The student will work on improving the current printer design by integrating a rotation platform to enable a third degree of freedom in printing. Additionally, the student will modify the control interface to achieve full automation of the printing process. The student will also characterize the final printing performance. Demonstrations will be designed to highlight the advantages of this enhanced 3D printer. (Don’t you want to make this cute 2D Pikachu become 3D alive?!) - Electrical Engineering, Mechanical Engineering, Printing Technology
- Bachelor Thesis, Semester Project
|
Improve collision-free path planning for robotic arms used for waste sorting by leveraging the CUDA-accelerated parallel planning library cuRobo. - Engineering and Technology
- Master Thesis, Semester Project
|
This project focuses on developing an innovative user interface for our human-robot collaboration system with a robotic arm. The student will investigate various interface modalities, including speech input, gesture recognition, and eye tracking using sensors such as cameras, microphones, and IMUs to effectively communicate user intent and control the robot during collaborative tasks. - Engineering and Technology, Information, Computing and Communication Sciences
- ETH Zurich (ETHZ), Master Thesis
|
This thesis focuses on developing a real-time capable system to detect hand contacts of medical staff during surgical procedures. The proposed system will be used to detect potential breaches in hand hygiene protocols and warn medical staff before contact with the patient. - Engineering and Technology, Information, Computing and Communication Sciences
- Master Thesis
|
To train reinforcement learning robot policies for human-robot collaborations, this thesis aims at leveraging the Isaac Gym to simulate collaborative scenarios and train robot policies for seamless robot assistance. - Information, Computing and Communication Sciences
- Master Thesis
|
We aim to develop a reinforcement learning-based global excavation planner that can plan for the long term and execute a wide range of excavation geometries. The system will be deployed on our legged excavator. - Intelligent Robotics
- Master Thesis, Semester Project
|