ETH ZurichAcronym | ETHZ | Homepage | http://www.ethz.ch/ | Country | Switzerland | ZIP, City | | Address | | Phone | | Type | Academy | Current organization | ETH Zurich | Child organizations | | Members | | Memberships | | Partners | |
Open OpportunitiesThis project investigates the integration of real-time computer vision capabilities into modern video see-through head-mounted displays (VST-HMDs). Using the Android Debugging Bridge (ADB), the study aims to develop a prototype for achieving object tracking, image registration, and other vision-based applications on Quest 3. Leveraging the computational power of a connected PC, the project explores advanced uses of VST technology, contributing to augmented reality (AR) innovations with applications such as diminishing reality or visual search. - Virtual Reality and Related Simulation
- Bachelor Thesis, ETH Zurich (ETHZ), Semester Project
| Robots have become increasingly advanced recently, capable of performing challenging tasks such as taking elevators and cooking shrimp. Moreover, their ability to accomplish long-horizon tasks given simple natural language instructions is also made possible by large language models. However, with this increased functionality comes the risk that intelligent robots might unintentionally or intentionally harm people based on instructions from an operator. On the other hand, significant efforts have been made to restrain large language models from generating harmful content. Can these efforts be applied to robotics to ensure safe interactions between robots and humans, even as robots become more capable? This project aims to answer this question.
- Engineering and Technology, Information, Computing and Communication Sciences
- Master Thesis, Semester Project
| This study investigates depth perception with virtual and real objects using video see-through (VST) and optical see-through (OST) head-mounted displays (HMDs). By comparing devices like Meta Quest 3, Pico 4, and HoloLens 2, the research explores how humans perceive spatial depth in mixed reality (MR) scenarios. Through Unity-based application development and user studies, the work evaluates depth perception differences and provides insights for advancing MR technology. - Virtual Reality and Related Simulation
- Bachelor Thesis, ETH Zurich (ETHZ), Semester Project
| The remarkable complexity of morphogenesis and tissue regeneration implies the existence of a transcellular communication network in which individual cells sense the environment and coordinate their biological activity in time and space. To understand the fascinating ability of tissue self-organization, comprehensive study of biophysical properties (cellular nanomechanics such as tension forces and bioelectromagnetics) in combination with the analysis of biochemical networks (signaling pathways and genetic circuits) is required.
In this framework we are investigating the unacknowledged key role of Desmoglein 3 (Dsg3) as a receptor involved in mechanosensing, capable of initiating a signaling response in the transcellular communication network, which results in stem cell fate conversion, plasticity and tissue repair.
Our goal is to apply innovative Fluidic Force Microscopy to measure altered biophysical parameters upon disruption of Dsg3 transadhesion such as cell stiffness, cell-cell adhesion, cell surface charges and electric potentials. Together with the University of Bern and University of Lübeck we are further investigating how these biophysical changes relate to transcriptomic, epigenomic and proteomic response circuits to ultimately infer biophysical and biochemical circuits involved in Dsg3 signaling.
- Biochemistry and Cell Biology, Biomedical Engineering, Medical and Health Sciences, Physics
- Bachelor Thesis, ETH Zurich (ETHZ), Master Thesis, Semester Project
| The remarkable complexity of morphogenesis and tissue regeneration implies the existence of a transcellular communication network in which individual cells sense the environment and coordinate their biological activity in time and space. To understand the fascinating ability of tissue self-organization, comprehensive study of biophysical properties (cellular nanomechanics such as tension forces and bioelectromagnetics) in combination with the analysis of biochemical networks (signaling pathways and genetic circuits) is required.
In this framework we are investigating the unacknowledged key role of Desmoglein 3 (Dsg3) as a receptor involved in mechanosensing, capable of initiating a signaling response in the transcellular communication network, which results in stem cell fate conversion, plasticity and tissue repair.
Our goal is to apply innovative Fluidic Force Microscopy to measure altered biophysical parameters upon disruption of Dsg3 transadhesion such as cell stiffness, cell-cell adhesion, cell surface charges and electric potentials. Together with the University of Bern and University of Lübeck we are further investigating how these biophysical changes relate to transcriptomic, epigenomic and proteomic response circuits to ultimately infer biophysical and biochemical circuits involved in Dsg3 signaling.
- Biochemistry and Cell Biology, Biomedical Engineering, Medical and Health Sciences, Physics
- Bachelor Thesis, ETH Zurich (ETHZ), Master Thesis, Semester Project
| Our team develops novel Aerial Robots that are able to autonomously manipulate and perform work in flight. In this thesis, we would like to explore the learning of task-specific policies for manipulation in flight.
- Intelligent Robotics
- Master Thesis
| Cardiac diffusion tensor imaging (cDTI) provides information about the cardiac microstructure by measuring the diffusion of water molecules within the heart wall. Current imaging standards measure three slices distributed across the left ventricle. However, if not corrected, respiratory motion causes slice misalignments that obstruct microstructure inference. Yet, this motion might also allow us to estimate sample points between slices, thus adjusting for motion and increasing spatial coverage. By using the respiratory navigator data, you will map in-vivo cDTI data to a 3D digital twin mesh and implement a tensor estimation to estimate sample points between slices based on spatial smoothness regularization. You then perform an accuracy evaluation on simulated data. - Biomedical Engineering, Human Biophysics, Medical Physics
- Bachelor Thesis, Master Thesis, Semester Project
| This thesis explores the integration of multi-view data and citizen science images to develop a scalable, high-accuracy tree species identification framework. - Computer Vision, Forestry Sciences, Photogrammetry and Remote Sensing
- Master Thesis
| The goal of the project consists in deriving error bounds for the approximate Gaussian process regression method given by the FITC method. - Engineering and Technology
- Master Thesis, Semester Project
| Multi-task learning is the problem of jointly learning multiple functions
that are “related” to each other. By leveraging this similarity, estimation performance can be
improved on each (possibly unseen) task, and one can make an efficient use of the available
data. The project aims at deriving
uncertainty bounds around the multi-task-system estimates. Specifically, the candidate will
work with the regularized trigonometric regression inspired by the so-called sparse-spectrum
Gaussian process regression, investigate the issue of bias learning (i.e., finding the features
that encode similarity among tasks) and derive error bounds for it, possibly setting the analysis
in the statistical learning framework. - Engineering and Technology
- Master Thesis, Semester Project
|
|