ETH ZurichAcronym | ETHZ | Homepage | http://www.ethz.ch/ | Country | Switzerland | ZIP, City | | Address | | Phone | | Type | Academy | Current organization | ETH Zurich | Child organizations | | Members | | Memberships | | Partners | |
Open OpportunitiesFabrication of microneedle array for extracting dermal interstitial fluid. - Biomedical Engineering
- Bachelor Thesis, Master Thesis, Semester Project
| Thermal energy storage (TES) operating at temperatures above 500 °C has the potential to help decar-bonize processes which typically rely on fossil fuels to produce high-T heat on demand.
Modelling this type of TES is challenging since heat transfer is dominated by radiation at high tempera-tures, which must be coupled with conduction and, for molten materials, convection. In a recent Master Thesis project, a voxel-based Monte Carlo model dedicated to these problems was developed and suc-cessfully validated against reference solutions [1].
The scope of this project is to exploit this software tool to investigate the design space of high-T thermal energy storage concepts, and to propose the design of a representative small-scale prototype to be tested in our labs. - Mechanical Engineering
- ETH Zurich (ETHZ), Master Thesis
| Various strategic interactions involve hierarchical decision-making processes, where one entity leads and others react accordingly. Stackelberg games provide a mathematical framework to model such scenarios, capturing the dynamics between a leader and multiple followers. However, in many real-world applications of such structures, we often only observe the response of the followers but we are unsure about the optimization problem that the followers are optimizing. This research
question, also known as inverse game theory, poses significant challenges, further complicated by noisy observations, bounded rationality, and many more. This project aims to develop methodologies for inferring the utility functions of followers in such scenarios by leveraging observed actions and partial knowledge of their parameters, working on Swissgrid energy market data provided by the MAESTRO project.
- Applied Economics, Applied Statistics, Numerical Analysis, Optimisation, Simulation and Modelling
- Master Thesis
| Modern buildings' HVAC (Heating, Ventilation, and Air Conditioning) systems incorporate a complex network of sensors, control units, and actuators working in coordination across multiple levels to ensure optimal operation. Key building control tasks include regulating air quality, temperature, and ventilation. Achieving efficient building control is critical for occupant comfort and meeting energy efficiency and sustainability targets. Due to the substantial energy consumption associated with buildings, enhancing operational efficiency by leveraging data analytics for control has a high potential for energy savings and sustainability gains. Effective control strategies can, in many practical cases, significantly reduce CO2 emissions from buildings. - Control Engineering, Electrical Engineering, Interdisciplinary Engineering, Mechanical Engineering, Systems Theory and Control
- Master Thesis
| This project will investigate how the
assumption of rationality affects leader-follower dynamics in Stackelberg games, particularly focusing on the potential loss of the leader’s first-mover advantage when followers act irrationally. We will examine scenarios where followers employ non-credible threats, take into account empirical evidence of irrational behavior and frame communication noise as a form of bounded rationality among followers. The aim of the project is to show that followers can strategically exploit their ”irrationality” to diminish the leader’s influence and to propose new insights into strategic interactions where rationality cannot be assumed, with implications for policy-making and other leader-follower contexts. - Mathematical Economics, Operations Research, Optimisation
- Master Thesis
| Energy storage systems become increasingly important to tackle the intermittent nature of renewable energy sources such as photovoltaics and wind turbines. This thesis focuses on a novel energy storage solution where excess electrical energy is converted into heat and back into electricity, using a novel piston-based engine concept that achieves over 70% round-trip efficiency. The aim is to design, optimize, and control this thermal energy storage system and to assess its economic potential in various scenarios. - Environmental Technologies, Interdisciplinary Engineering, Mechanical Engineering
- Master Thesis
| The Swiss Energy Strategy 2050 aims to achieve zero net emissions target as of 2050. The four leading Swiss research institutes — Paul Scherrer Institute (PSI), Swiss Federal Laboratories for Materials Science and Technology (EMPA), Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), and Swiss Federal Institute of Aquatic Science and Technology (EAWAG)—are at the forefront of this en-deavour. In the context of the SCENE project, these institutes are collaboratively developing science-based roadmaps that outline the anticipated pathways to attain net-zero emissions before 2040. The tran-sition to net zero requires a multifaceted approach, encompassing technological advancements, con-sumption reductions, and market-based mechanisms for emission compensation and reduction. An es-sential component of this transition is a comprehensive CO2 emission-related cost analysis. This analysis will evaluate the financial implications of shifting energy technologies, reducing consumption, and imple-menting market-based emission compensation and reduction strategies. - Earth Sciences, Economics, Engineering and Technology, Policy and Political Science
- ETH Zurich (ETHZ), Master Thesis
| Direct air capture (DAC) is an indispensable technology for meeting the challenges of achieving net-zero emissions [1]. Despite its promise, DAC with CO2 storage (DACCS) faces significant hurdles, primarily due to its (current) high energy intensity and capital expenditures, which are sensitive to design- and location-specific factors. Optimal carbon dioxide removal (CDR) efficiency is reached when powered by low-carbon energy sources [2–4]. This indicates the potential of so-called `off-grid' DACCS designs – i.e., DACCS systems without a connection to the power grid network – since they allow a system fully powered by renewable energy sources, thereby avoiding emissions from currently carbon-intensive power grids. However, off-grid systems rely on intermittent renewable energy sources, such as solar photovoltaic (PV) and wind turbines. The intermittency of these sources, the power requirements of DACCS, and the need for heat limit the feasibility of widespread deployment, especially in land-constrained areas. Here, the main goal is to assess the performance of off-grid DACCS with a global scope by extending an earlier geospatial model developed at ETH Zurich.
Prerequisites
Basic knowledge of energy technologies and energy systems analysis, techno-economic analysis, and life cycle assessment. Familiarity with negative emissions technologies/carbon dioxide removal is an asset. Familiarity and knowledge of Python, geospatial analysis, and linear optimization is a plus. - Engineering and Technology
- ETH Zurich (ETHZ), Master Thesis
| Recent advances in model-free Reinforcement Learning have shown superior performance in different complex tasks, such as the game of chess, quadrupedal locomotion, or even drone racing. Given a reward function, Reinforcement Learning is able to find the optimal policy through trial-and-error in simulation, that can directly be deployed in the real-world. In our lab, we have been able to outrace professional human pilots using model-free Reinforcement Learning trained solely in simulation.
- Flight Control Systems, Intelligent Robotics, Knowledge Representation and Machine Learning
- Master Thesis, Semester Project
| As Europe moves towards a renewable energy future, heat pumps are becoming essential in reducing fossil fuel dependency in building heating. Although heat pumps are generally more efficient than traditional combustion-based systems, the high cost of electricity in Europe makes it essential to optimize their operation for affordability.
Heat pump efficiency is closely linked to the amount of energy and power required to maintain comfortable indoor temperatures, which vary significantly by user preferences and building specifics. Strategies such as temperature setbacks—reducing heating when the building is unoccupied or at night—can greatly enhance efficiency. However, applying these strategies effectively requires a nuanced understanding of user-specific comfort ranges and sensitivity to temperature changes.
- Behavioural and Cognitive Sciences, Engineering and Technology, Information, Computing and Communication Sciences, Mathematical Sciences
- Collaboration, Master Thesis
|
|