Chair of Architecture and Building SystemsOpen OpportunitiesThis research focuses on optimizing district thermal network design and phasing strategies by incorporating existing infrastructure and studying interplays with urban design metrics. While many existing district thermal network models often assume the absence of prior infrastructure, this study introduces methodologies to account for existing pipes, plants, and pumps, enabling a more realistic scenario for network planning. Additionally, the research explores phased implementation strategies to maximize return on investment under budget constraints, providing a pathway for incremental network construction and operation.
A key aspect of the study is the feedback loop between urban design and thermal network engineering, which quantifies how urban parameters such as building density, land use types, and development phasing affect network performance, and vice versa. The proposed methodologies are applied to case studies in Zurich, Singapore, and Shanghai, representing diverse climatic and urban contexts.
The outcomes include a framework for integrating existing infrastructure, strategies for phased implementation, and insights into the dynamic interplay between urban design and district energy systems. If time permits, the research will also produce a computational prototype for integration into the City Energy Analyst (CEA).
- Architecture, Urban Environment and Building
- Master in Integrated Building Systems (ETHZ), Master Thesis
| Large-scale polymer 3D printing offers unique geometric freedom and performance integration, enabling the creation of lightweight, sustainable, and functional facade systems. Within the existing research efforts of NCCR DFAB, this project focuses specifically on mechanical testing to compare different polymer materials for use in 3D-printed facade systems. The research evaluates mechanical properties such as bending, impact, and tensile strength to determine the most suitable materials for lightweight facade components. Comparisons are made based on how the materials meet mechanical performance requirements for functional facades. - Building
- ETH Zurich (ETHZ), Master in Integrated Building Systems (ETHZ), Semester Project
| Digital and robotic fabrication techniques are increasingly being explored to create building components with embedded functionalities, offering unparalleled opportunities for customization.
As the adoption of robotic 3D printing grows, it becomes crucial to evaluate the environmental impacts of these processes, particularly their energy consumption and associated emissions. Understanding these impacts is essential to assess the sustainability of robotic 3D printing processes.
This project, enabled by real-world data provided by Saeki Robotics, aims to develop a predictive model to assess and forecast energy consumption and emissions in robotic 3D printing. - Architecture, Urban Environment and Building
- ETH Zurich (ETHZ), Master in Integrated Building Systems (ETHZ), Semester Project
| Rapid urbanization has intensified the Urban Heat Island (UHI) effect in many cities worldwide, leading to higher ambient temperatures and reduced thermal comfort. Building surfaces play a pivotal role in this process, as their materials and configurations affect how heat is absorbed and re-emitted into the surrounding environment. To better understand and mitigate these effects, this master’s thesis will investigate the thermal behavior of selected façade wall assemblies under controlled “sunlight” conditions using the Solar Simulator at the Zero Carbon Building Systems (ZCBS) Lab. - Architecture
- Master in Integrated Building Systems (ETHZ)
|
|