Müller Group / Laboratory for Bone BiomechanicsOpen OpportunitiesThis project endeavors to explore the dynamic interplay among calcium ions, bone graft substitutes, and resident immune cells in both orthotopic and ectopic environments, employing advanced ratiometric imaging techniques. - Biomaterials, Cellular Interactions (incl. Adhesion, Matrix, Cell Wall)
- Bachelor Thesis, Internship, Master Thesis, Semester Project
| Our goal is to establish a heterocellular 3D printed bone organoid model comprising all major bone cell types (osteoblasts, osteocytes, osteoclasts) to recapitulate bone remodeling units in an in vitro system. The organoids will be produced with the human cells, as they could represent human pathophysiology better than animal models, and eventually could replace them. These in vitro models could be used in the advancement of next-generation personalised treatment strategies. Our tools are different kinds of 3D bioprinting platforms, bio-ink formulations, hydrogels, mol-bioassays, and time-lapsed image processing of micro-CT scans. - Biomaterials, Biomechanical Engineering, Cell Development (incl. Cell Division and Apoptosis), Cellular Interactions (incl. Adhesion, Matrix, Cell Wall), Polymers
- Bachelor Thesis, ETH Zurich (ETHZ), Internship, Master Thesis, Semester Project
| The proposed project will investigate the trabecular bone response to estrogen depletion and will be used to investigate the probability of the chosen mechanism of action for estrogen. The chosen mechanism of action will be validated using available experimental reference data. - Biomechanics, Programming Techniques
- Bachelor Thesis, Internship, Master Thesis, Semester Project
| In over 100 years, the remarkable ability of bone to adapt to its mechanical environment has been a source of scientific fascination. Bone regeneration has been shown to be highly dependent on the mechanical environment at the fracture site. It has been demonstrated that mechanical stimuli can either accelerate or impede regeneration. Despite the fundamental importance of the mechanical environment in influencing bone regeneration, the molecular mechanisms underlying this phenomenon are complex and poorly understood. - Biomedical Engineering, Medical Physiology
- Bachelor Thesis, Internship, Master Thesis, Semester Project
|
|