 Acoustic Robotics for Life Sciences and Healthcare (ARSL)Open OpportunitiesSoft robotics has gained significant attention in recent years due to its ability to perform delicate and adaptive tasks that traditional rigid robots cannot achieve. Among various actuation methods, ultrasound-driven soft robots present a promising avenue for non-contact and precise control in liquid environments. These robots have potential applications in biomedical fields, microfluidics, and underwater exploration. The integration of ultrasound as an actuation mechanism enables efficient propulsion, controlled deformation, and complex locomotion patterns. - Engineering and Technology, Physics
- Master Thesis
| Acoustic standing waves can be used to manipulate physical objects in both gas and liquid environments. This project investigates their effects on particle flow and selectivity in air, considering various particle sizes and weights. Through modeling, simulations, and experimental validation, we aim to characterize the selectivity of these waves and develop a compact driver circuit for practical implementation. The student will work closely with Honeywell engineers on test setups, electronic designs, and prototyping. A successful outcome may lead to a subsequent R&D phase or PhD project in a collaboration with Honeywellto further develop these findings. - Electrical and Electronic Engineering, Mechanical and Industrial Engineering, Physics
- Master Thesis
| Piezoelectric elements are widely used for particle manipulation and atomization, with applications in humidification, cooling, and medical aerosol generation. However, temperature and environmental factors can impact the efficiency of vaporization and the properties of the generated droplets. Additionally, the heat generated by piezo elements affects particle size and flux, requiring careful control.
This project will investigate the effect of piezoelectric elements on liquid and gel atomization, optimizing power consumption, repeatability, and calibration. A proof-of-concept demonstrator will be developed to study these parameters under controlled conditions. A successful outcome may lead to a subsequent R&D phase or PhD project in collaboration with Honeywell to further develop these findings - Electrical and Electronic Engineering, Mechanical and Industrial Engineering, Physics
- Master Thesis
| Jellyfish-inspired robots have gained significant attention in soft robotics and biomimetic engineering due to their energy efficiency, silent propulsion, and adaptability to aquatic environments. The AI-powered Jellyfish robots offer a promising avenue for developing next-generation robotic systems with applications in biomedical research, environmental monitoring, and marine life interaction. - Engineering and Technology
- ETH Zurich (ETHZ), Master Thesis
| Ultrasound-based transcranial therapy is emerging as a non-invasive and highly precise technique for treating neurological disorders, enhancing drug delivery, and promoting brain stimulation. By leveraging an advanced ultrasound transducer array embedded in a wearable helmet, this project aims to develop a novel system for targeted, real-time brain therapy - Engineering and Technology, Medical and Health Sciences
- ETH Zurich (ETHZ), Master Thesis
| The ability to manipulate micro-scale objects with precision is a growing field in biomedical engineering, particularly in the context of treating thrombotic conditions. Thrombolysis, the process of dissolving blood clots, remains a significant challenge in medical treatment, with current techniques often limited by their invasiveness and effectiveness. Recent advancements have explored the use of microrobots for targeted thrombolysis, leveraging their ability to maneuver in complex biological environments to enhance clot dissolution and drug delivery. Rotation plays a crucial role in various natural processes, including feeding and locomotion, demonstrating its effectiveness in achieving complex interactions with the environment. However, achieving ultrafast rotation in artificial microrobots presents significant engineering challenges. Traditional methods of inducing rotation, such as acoustic manipulation, have shown promise but are often constrained by limitations in rotational speed and control precision. These constraints hinder the microrobot's ability to effectively engage with functions.
In response to these challenges, we introduce an innovative solution: an untethered ultrafast-rotating spiral microrobot designed for physical thrombolysis. This microrobot employs a symmetric spiral structure that generates a consistent torque while maintaining a zero net force, allowing for sustained high-speed rotation. The unique design of the spiral structure ensures efficient rotational motion, overcoming previous limitations in rotation speed. A key feature of our microrobot is its sharp-tip design, which enhances its ability to penetrate and mechanically disrupt thrombi. This mechanical drilling action facilitates the breakdown of clots, making thrombolysis more effective. Additionally, the microrobot incorporates a drug-holding cavity, enabling it to deliver therapeutic agents directly to the site of the thrombus. This dual functionality—mechanical disruption combined with targeted drug delivery—promises a more efficient approach to thrombolysis. This ultrafast-rotating microrobot represents a significant advancement in microrobot design and its application in medical treatments.
- Engineering and Technology
- Master Thesis
| The manipulation of materials and fluids through acoustic streaming has emerged as a powerful technique with applications in manufacturing and biomedical engineering. This method utilizes sound waves to control the movement of particles within a fluid, offering precise and non-invasive manipulation. However, achieving freeform path manipulation—guiding materials along complex, non-linear trajectories—remains a significant challenge due to difficulties in controlling the influence range and vortex dynamics of acoustic streaming. Traditional methods often struggle with maintaining precision and stability along intricate paths, as the non-uniform distribution of acoustic forces complicates consistent directionality. Artificial Intelligence (AI) presents a promising solution, enabling real-time control and optimization of these systems. By integrating AI with acoustic streaming, algorithms can analyze and predict the interactions between acoustic forces and fluid dynamics, allowing for dynamic adjustments that enhance accuracy.
In this thesis, we propose addressing these challenges by implementing a pillar array of acoustic actuators coupled with AI-driven control systems. The pillar array will generate and modulate acoustic streaming fields, while AI will optimize and automate their control in real time. This integration aims to improve the precision of freeform path manipulation, facilitating the creation of complex patterns that are otherwise difficult to achieve, thereby expanding the possibilities for material manipulation across various applications.
- Engineering and Technology
- Bachelor Thesis, Master Thesis, Semester Project
| Identifying effective control strategies for the automation of acoustic robotic systems is challenging in a microfluidic environment. This project focuses on reinforcement learning (RL) to control microrobots in chaotic microfluidic flow and vortices. - Computer Vision, Intelligent Robotics, Neural Networks, Genetic Alogrithms and Fuzzy Logic, Robotics and Mechatronics, Virtual Reality and Related Simulation
- Bachelor Thesis, Master Thesis, Semester Project
|
|