Department of Information Technology and Electrical EngineeringAcronym | D-ITET | Homepage | http://www.ee.ethz.ch/ | Country | Switzerland | ZIP, City | | Address | | Phone | | Type | Academy | Parent organization | ETH Zurich | Current organization | Department of Information Technology and Electrical Engineering | Child organizations | |
Open OpportunitiesThe objective of this project is to synthesize monodisperse solutions of elongated silica nanoparticles following established recipes. The nanoparticles will be analyzed with electron microscopy and their mode structure will be studied in optical traps operated in high vacuum. - Chemical Engineering, Electrical and Electronic Engineering, Materials Engineering, Optical Physics, Physical Chemistry
- Master Thesis, Semester Project
| Online Feedback optimization (OFO) is a beautiful control method to drive a dynamical system to an
optimal steady-state. By directly interconnecting optimization algorithms with real-time system measurements, OFO guarantees robustness and efficient operation, yet without requiring exact knowledge
of the system model. The goal of this project is to develop faster OFO schemes for congestion control
on freeways, in particular by leveraging the monotonicity properties of traffic networks. - Engineering and Technology
- Master Thesis
| The remarkable complexity of morphogenesis and tissue regeneration implies the existence of a transcellular communication network in which individual cells sense the environment and coordinate their biological activity in time and space. To understand the fascinating ability of tissue self-organization, comprehensive study of biophysical properties (cellular nanomechanics such as tension forces and bioelectromagnetics) in combination with the analysis of biochemical networks (signaling pathways and genetic circuits) is required.
In this framework we are investigating the unacknowledged key role of Desmoglein 3 (Dsg3) as a receptor involved in mechanosensing, capable of initiating a signaling response in the transcellular communication network, which results in stem cell fate conversion, plasticity and tissue repair.
Our goal is to apply innovative Fluidic Force Microscopy to measure altered biophysical parameters upon disruption of Dsg3 transadhesion such as cell stiffness, cell-cell adhesion, cell surface charges and electric potentials. Together with the University of Bern and University of Lübeck we are further investigating how these biophysical changes relate to transcriptomic, epigenomic and proteomic response circuits to ultimately infer biophysical and biochemical circuits involved in Dsg3 signaling.
- Biochemistry and Cell Biology, Biomedical Engineering, Medical and Health Sciences, Physics
- Bachelor Thesis, ETH Zurich (ETHZ), Master Thesis, Semester Project
| The remarkable complexity of morphogenesis and tissue regeneration implies the existence of a transcellular communication network in which individual cells sense the environment and coordinate their biological activity in time and space. To understand the fascinating ability of tissue self-organization, comprehensive study of biophysical properties (cellular nanomechanics such as tension forces and bioelectromagnetics) in combination with the analysis of biochemical networks (signaling pathways and genetic circuits) is required.
In this framework we are investigating the unacknowledged key role of Desmoglein 3 (Dsg3) as a receptor involved in mechanosensing, capable of initiating a signaling response in the transcellular communication network, which results in stem cell fate conversion, plasticity and tissue repair.
Our goal is to apply innovative Fluidic Force Microscopy to measure altered biophysical parameters upon disruption of Dsg3 transadhesion such as cell stiffness, cell-cell adhesion, cell surface charges and electric potentials. Together with the University of Bern and University of Lübeck we are further investigating how these biophysical changes relate to transcriptomic, epigenomic and proteomic response circuits to ultimately infer biophysical and biochemical circuits involved in Dsg3 signaling.
- Biochemistry and Cell Biology, Biomedical Engineering, Medical and Health Sciences, Physics
- Bachelor Thesis, ETH Zurich (ETHZ), Master Thesis, Semester Project
| We are looking for motivated students for a semester project, master thesis, or internship that will focus on the programming tasks related to data acquisition and processing from state-of-the-art FPGA-based photon counting electronics and real-time processing and visualization of microscopy images. - Biomedical Engineering, Biosensor Technologies, Electrical and Electronic Engineering, Engineering/Technology Instrumentation, Interdisciplinary Engineering
- ETH Zurich (ETHZ), Internship, Master Thesis, Semester Project, Student Assistant / HiWi
| Safety is a fundamental requirement for critical systems such as power converter protection, robotics, and autonomous vehicles. Ensuring long-term safety in these systems requires both characterizing safe behaviour and designing feedback controllers that enforce safety constraints. Control Barrier Functions (CBFs) have recently emerged as a powerful tool for addressing these challenges by defining safe regions in the state space and formulating control strategies that maintain safety. When the dynamical system is precisely modeled, a CBF can be designed by solving a convex optimization problem, where the state-space model is incorporated into the constraints.
However, designing valid CBFs remains difficult when system models are uncertain or time-varying. More importantly, CBFs and control laws derived from inaccurate models may lead to unsafe behaviour in real-world systems. To overcome these difficulties, this project aims to develop a data-driven approach for constructing CBFs without relying on explicit system models. Instead, we will leverage behavioural systems theory to replace model information in the design program by persistently exciting data. The proposed method will be applied to output current protection in power converters or robotics collision avoidance. - Engineering and Technology
- Master Thesis, Semester Project
| Having demonstrated conclusive results in both light guiding and modulations, BaTiO3 (BTO) presents great potential in demonstrating a monolithic integration of PICs. This platform could indeed present scalable circuits that include both the passive and active devices for high speed modulation. However The transmission's efficiency is currently limited by the fibers to chip losses. Edge couplers (EC) appear as a suitable approach to address this issue while guaranteeing a simplified layer stack. - Optical and Photonic Systems
- Semester Project
| Scanning ion conductance microscopy (SICM) is the non-contact SPM technology to image live cells based on glass capillaries with a nanometric aperture. It applies a voltage and measures the ionic current flowing through the pipette above the sample in the buffer solution: the recorded current represents the feedback signal to measure the topography of the sample. This project aims to characterize a state of the art high-speed SICM to enable time-resolved live cell imaging, and do the live cell imaging on human primary keratinocytes to study the related disease. - Biomedical Engineering, Electrical and Electronic Engineering, Information, Computing and Communication Sciences, Manufacturing Engineering, Mechanical Engineering, Nanotechnology
- Master Thesis
| Our research group aims to enhance the understanding of human language acquisition and development using songbird as model.
We are particularly interested in the evolutionary aspects of language, where two developmental tendencies are observed: convergent and divergent evolution. Convergent evolution refers to the simplification of language complexity, similar to how infants gradually acquire human language. Conversely, divergent evolution involves an increase in complexity, akin to teenagers creating and using novel words to establish unique identities. We propose to investigate whether similar effects are observable in animal vocalization learning, specifically in song learning of zebra finches and to explore the effect of social interaction.
To facilitate this investigation, our team has developed a "birdpark," a multimodal recording system that provides a naturalistic social environment for observing and recording multiple zebra finches within a dynamic group context.
- Learning, Memory, Cognition and Language, Linguistic Processes (incl. Speech Production and Comprehension), Sensory Systems, Signal Processing, Zoology
- ETH Zurich (ETHZ), Master Thesis, Semester Project
| Modern power systems exhibit significant complexity, making their analysis and control particularly challenging, especially when precise system models are unavailable. Traditional model-based control strategies often fail to scale with increasing system complexity, while recent advances in nonlinear, learning based control offer promising alternatives. However, many of these methods lack formal stability guarantees, which are crucial for safety-critical applications such as power system frequency control. This project aims to bridge this gap by developing a deep learning framework for analyzing the dissipativity properties of power systems and designing stabilizing controllers with formal guarantees. - Engineering and Technology
- Master Thesis, Semester Project
|
|