Department of Information Technology and Electrical EngineeringAcronym | D-ITET | Homepage | http://www.ee.ethz.ch/ | Country | Switzerland | ZIP, City | | Address | | Phone | | Type | Academy | Parent organization | ETH Zurich | Current organization | Department of Information Technology and Electrical Engineering | Child organizations | |
Open OpportunitiesThe remarkable complexity of morphogenesis and tissue regeneration implies the existence of a transcellular communication network in which individual cells sense the environment and coordinate their biological activity in time and space. To understand the fascinating ability of tissue self-organization, comprehensive study of biophysical properties (cellular nanomechanics such as tension forces and bioelectromagnetics) in combination with the analysis of biochemical networks (signaling pathways and genetic circuits) is required.
In this framework we are investigating the unacknowledged key role of Desmoglein 3 (Dsg3) as a receptor involved in mechanosensing, capable of initiating a signaling response in the transcellular communication network, which results in stem cell fate conversion, plasticity and tissue repair.
Our goal is to apply innovative Fluidic Force Microscopy to measure altered biophysical parameters upon disruption of Dsg3 transadhesion such as cell stiffness, cell-cell adhesion, cell surface charges and electric potentials. Together with the University of Bern and University of Lübeck we are further investigating how these biophysical changes relate to transcriptomic, epigenomic and proteomic response circuits to ultimately infer biophysical and biochemical circuits involved in Dsg3 signaling.
- Biochemistry and Cell Biology, Biomedical Engineering, Medical and Health Sciences, Physics
- Bachelor Thesis, ETH Zurich (ETHZ), Master Thesis, Semester Project
| The proliferation of mobile and embedded devices has spurred the demand for efficient, high-quality
speech synthesis systems that operate entirely on-device. This project aims to develop a fast,
quantized speech synthesis pipeline optimized for mobile platforms (i.e. Samsung Galaxy, Google
Pixel Pro 8), focusing on reducing computational load and memory usage without compromising
audio quality. - Engineering and Technology, Information, Computing and Communication Sciences
- Bachelor Thesis, ETH Zurich (ETHZ), Master Thesis, Semester Project
| Improving volume control precision and robustness in automated pipetting remains a challenge, often limited by traditional indirect methods. This project explores direct volume control by leveraging internal air pressure measurements and the ideal gas law. Key obstacles include friction, pressure oscillations, varying liquid viscosities, evaporation, and liquid retention. Collaborating with Hamilton Robotics, the goal is to develop a robust control architecture for their precision pipette (MagPip) suitable for diverse liquids. The approach involves mathematical modeling based on sensor data, designing robust control strategies to handle nonlinearities and disturbances, and validating through simulation and real-world experiments. - Control Engineering, Systems Theory and Control, Systems Theory and Control
- Semester Project
| In this project, you will explore how cells generate mechanical forces using confocal traction force microscopy (cTFM). The project combines experimental techniques, such as cell culturing, quantum dot array printing, and live-cell confocal imaging, together with computational data analysis using the open-source tool Cellogram. By growing cells on deformable substrates and tracking the displacement of fluorescent quantum dots, students will quantify the traction forces that individual cells exert on their environment. - Biology, Engineering and Technology, Information, Computing and Communication Sciences
- Bachelor Thesis, Master Thesis, Semester Project
| Next-generation ultrasound (US) imaging demands exceptionally high data throughput, exceeding 90 Gbps for ultrafast applications. This project harnesses datacenter networking techniques—100G Ethernet, RDMA, and HPC-grade storage—to enable real-time streaming of raw US data at minimal latency. By integrating advanced optical interfaces and bypassing conventional CPU-intensive workflows, this project aims to achieve sustained multi-gigabit performance, paving the way for cutting-edge imaging analytics and machine learning within modern datacenter environments - Computer Communications Networks, Electrical Engineering
- Biomedical (PBL), Firmware (PBL), FPGA (PBL), Master Thesis, Semester Project, Software (PBL)
| In this project, we aim to develop a novel PCB integrating a powerful PULP chip, i.e., the GAP9, and event-based sensor, the Prophesee Genx320, and a RGB camera, the Himax HB0360 to enable multi modal AI-driven perception aboard nano-drones - Integrated Circuits
- Bachelor Thesis, Master Thesis, Semester Project
| Are you interested in what a cell look like in nanometer scale? Do you want to see how the cell behaves in real time?
Scanning ion conductance microscopy (SICM) is the non-contact SPM technology to image live cells based on glass capillaries with a nanometric aperture. It applies a voltage and measures the ionic current flowing through the pipette above the sample in the buffer solution: the recorded current represents the feedback signal to measure the topography of the sample. This project aims to characterize a state of the art high-speed SICM to enable time-resolved live cell imaging, and do the live cell imaging on human primary keratinocytes to study the related disease. - Biomedical Engineering, Electrical and Electronic Engineering, Information, Computing and Communication Sciences, Manufacturing Engineering, Mechanical Engineering, Nanotechnology
- Master Thesis
| The objective of this project is to synthesize monodisperse solutions of elongated silica nanoparticles following established recipes. The nanoparticles will be analyzed with electron microscopy and their mode structure will be studied in optical traps operated in high vacuum. - Chemical Engineering, Electrical and Electronic Engineering, Materials Engineering, Optical Physics, Physical Chemistry
- Master Thesis, Semester Project
| Online Feedback optimization (OFO) is a beautiful control method to drive a dynamical system to an
optimal steady-state. By directly interconnecting optimization algorithms with real-time system measurements, OFO guarantees robustness and efficient operation, yet without requiring exact knowledge
of the system model. The goal of this project is to develop faster OFO schemes for congestion control
on freeways, in particular by leveraging the monotonicity properties of traffic networks. - Engineering and Technology
- Master Thesis
| Safety is a fundamental requirement for critical systems such as power converter protection, robotics, and autonomous vehicles. Ensuring long-term safety in these systems requires both characterizing safe behaviour and designing feedback controllers that enforce safety constraints. Control Barrier Functions (CBFs) have recently emerged as a powerful tool for addressing these challenges by defining safe regions in the state space and formulating control strategies that maintain safety. When the dynamical system is precisely modeled, a CBF can be designed by solving a convex optimization problem, where the state-space model is incorporated into the constraints.
However, designing valid CBFs remains difficult when system models are uncertain or time-varying. More importantly, CBFs and control laws derived from inaccurate models may lead to unsafe behaviour in real-world systems. To overcome these difficulties, this project aims to develop a data-driven approach for constructing CBFs without relying on explicit system models. Instead, we will leverage behavioural systems theory to replace model information in the design program by persistently exciting data. The proposed method will be applied to output current protection in power converters or robotics collision avoidance. - Engineering and Technology
- Master Thesis, Semester Project
|
|