 Automatic Control LaboratoryOpen OpportunitiesImproving volume control precision and robustness in automated pipetting remains a challenge, often limited by traditional indirect methods. This project explores direct volume control by leveraging internal air pressure measurements and the ideal gas law. Key obstacles include friction, pressure oscillations, varying liquid viscosities, evaporation, and liquid retention. Collaborating with Hamilton Robotics, the goal is to develop a robust control architecture for their precision pipette (MagPip) suitable for diverse liquids. The approach involves mathematical modeling based on sensor data, designing robust control strategies to handle nonlinearities and disturbances, and validating through simulation and real-world experiments. - Control Engineering, Systems Theory and Control, Systems Theory and Control
- Semester Project
| Online Feedback optimization (OFO) is a beautiful control method to drive a dynamical system to an
optimal steady-state. By directly interconnecting optimization algorithms with real-time system measurements, OFO guarantees robustness and efficient operation, yet without requiring exact knowledge
of the system model. The goal of this project is to develop faster OFO schemes for congestion control
on freeways, in particular by leveraging the monotonicity properties of traffic networks. - Engineering and Technology
- Master Thesis
| Safety is a fundamental requirement for critical systems such as power converter protection, robotics, and autonomous vehicles. Ensuring long-term safety in these systems requires both characterizing safe behaviour and designing feedback controllers that enforce safety constraints. Control Barrier Functions (CBFs) have recently emerged as a powerful tool for addressing these challenges by defining safe regions in the state space and formulating control strategies that maintain safety. When the dynamical system is precisely modeled, a CBF can be designed by solving a convex optimization problem, where the state-space model is incorporated into the constraints.
However, designing valid CBFs remains difficult when system models are uncertain or time-varying. More importantly, CBFs and control laws derived from inaccurate models may lead to unsafe behaviour in real-world systems. To overcome these difficulties, this project aims to develop a data-driven approach for constructing CBFs without relying on explicit system models. Instead, we will leverage behavioural systems theory to replace model information in the design program by persistently exciting data. The proposed method will be applied to output current protection in power converters or robotics collision avoidance. - Engineering and Technology
- Master Thesis, Semester Project
|
|