 Institute of Robotics and Intelligent Systems D-MAVTOpen OpportunitiesIn this project, the student applies concepts from current advances in image generation to create artificial events from standard frames. Multiple state-of-the-art deep learning methods will be explored in the scope of this project. - Artificial Intelligence and Signal and Image Processing
- Master Thesis, Semester Project
| The goal of this project is to develop a shared embedding space for events and frames, enabling the training of a motor policy on simulated frames and deployment on real-world event data. - Artificial Intelligence and Signal and Image Processing
- Master Thesis, Semester Project
| This project focuses on the generation of detailed 3D models from a user-specified set of 3D cuboids. - Computer Vision
- ETH Zurich (ETHZ), Master Thesis, Semester Project
| We are working on a novel product which tracks breathing with standard earphones (like Apple AirPods) only. To do this we capture the sound of breathing with the microphone which is in every earphone. We are working on an algorithm with which we can detect the ventilatory thresholds (VT1/VT2) with the breathing rate captured via the earphones. BreezeLabs is an ETH spin-off. - Biomedical Engineering, Sport and Exercise Psychology, Sports Medicine
- Internship, Master Thesis
| Develop a method for collision aware reaching tasks using reinforcement learning and shape encodings of the environment - Intelligent Robotics
- ETH Zurich (ETHZ), Master Thesis, Semester Project
| Unlock the potential of differentiable simulation on ALMA, a quadrupedal robot equipped with a robotic arm. Differentiable simulation enables precise gradient-based optimization, promising greater tracking accuracy and efficiency compared to standard reinforcement learning approaches. This project dives into advanced simulation and control techniques, paving the way for improvements in robotic trajectory tracking. - Intelligent Robotics
- Bachelor Thesis, Master Thesis, Semester Project
| Join a team of scientists improving the long-term prognosis and treatment of Spinal Cord Injury (SCI) through mobile and wearable systems and personalized health monitoring.
Joining the SCAI Lab part of the Sensory-Motor Systems Lab at ETH, you will have the unique opportunity of working at one of the largest and most prestigious health providers in Switzerland: Swiss Paraplegic Center (SPZ) in Nottwil (LU). - Artificial Intelligence and Signal and Image Processing, Computer Software, Data Format, Information Systems
- ETH Zurich (ETHZ), Internship, Lab Practice, Student Assistant / HiWi
| The uprise of consumer-grade fitness trackers has opened the doors to long-term activity monitoring in the wild in research and clinics. However, Fitbit does not identify napping episodes shorter than 90 minutes. Hence, there is a need to establish a robust algorithm to detect naps. - Artificial Intelligence and Signal and Image Processing, Biomedical Engineering, Biosensor Technologies, Electrical and Electronic Engineering
- Bachelor Thesis, ETH Zurich (ETHZ), Master Thesis
| The aim of this project is to develop and improve wearable electronics solutions for data acquisition from textile-based sensors used in our smart clothing. - Engineering and Technology, Information, Computing and Communication Sciences
- Bachelor Thesis, Master Thesis, Semester Project
| The ability to manipulate micro-scale objects with precision is a growing field in biomedical engineering, particularly in the context of treating thrombotic conditions. Thrombolysis, the process of dissolving blood clots, remains a significant challenge in medical treatment, with current techniques often limited by their invasiveness and effectiveness. Recent advancements have explored the use of microrobots for targeted thrombolysis, leveraging their ability to maneuver in complex biological environments to enhance clot dissolution and drug delivery. Rotation plays a crucial role in various natural processes, including feeding and locomotion, demonstrating its effectiveness in achieving complex interactions with the environment. However, achieving ultrafast rotation in artificial microrobots presents significant engineering challenges. Traditional methods of inducing rotation, such as acoustic manipulation, have shown promise but are often constrained by limitations in rotational speed and control precision. These constraints hinder the microrobot's ability to effectively engage with functions.
In response to these challenges, we introduce an innovative solution: an untethered ultrafast-rotating spiral microrobot designed for physical thrombolysis. This microrobot employs a symmetric spiral structure that generates a consistent torque while maintaining a zero net force, allowing for sustained high-speed rotation. The unique design of the spiral structure ensures efficient rotational motion, overcoming previous limitations in rotation speed. A key feature of our microrobot is its sharp-tip design, which enhances its ability to penetrate and mechanically disrupt thrombi. This mechanical drilling action facilitates the breakdown of clots, making thrombolysis more effective. Additionally, the microrobot incorporates a drug-holding cavity, enabling it to deliver therapeutic agents directly to the site of the thrombus. This dual functionality—mechanical disruption combined with targeted drug delivery—promises a more efficient approach to thrombolysis. This ultrafast-rotating microrobot represents a significant advancement in microrobot design and its application in medical treatments.
- Engineering and Technology
- Master Thesis
|
|