Search for public opportunitiesRegister now and browse all open positions. It's free!Profit from a great search interface and directly apply to the position of your choice. SiROP - Excellence in Science! Profit from a great search interface and directly apply to the position of your choice. SiROP - Excellence in Science! Notify me when new projects of my interest are advertized!You define what you are interested in and we will send you an Email when a new project matches your criteria, it's that easy. You define what you are interested in and we will send you an Email when a new project matches your criteria, it's that easy. Results |
---|
This project aims to leverage machine learning to accelerate the design of polymer-based drug delivery systems with tailored release kinetics. Using a curated dataset of polymer formulations and their drug release profiles, predictive models will be developed, validated, and applied to optimize future formulations. By combining computational tools with explainable AI techniques, the project seeks to uncover key design principles and reduce experimental workloads. The outcome will enable smarter, data-driven reformulation processes, advancing personalized medicine and next-generation drug delivery technologies. - Biomedical Engineering, Chemical Engineering, Electrical and Electronic Engineering, Industrial Biotechnology and Food Sciences, Interdisciplinary Engineering, Macromolecular Chemistry, Manufacturing Engineering, Materials Engineering, Mechanical and Industrial Engineering, Pharmacology and Pharmaceutical Sciences
- Internship, Semester Project
| Are you interested in discovering chemical reaction networks by using machine leaning approaches? And to discover new genetic circuit topologies capable of temporal signal processing and biocomputation?
Then we have the project for you! The details are below. Come join us! - Computational Biology and Bioinformatics, Control Engineering, Stochastic Analysis and Modelling
- ETH Zurich (ETHZ), Master Thesis, Semester Project
| Are you interested in what a cell look like in nanometer scale? Do you want to see how the cell behaves in real time?
Scanning ion conductance microscopy (SICM) is the non-contact SPM technology to image live cells based on glass capillaries with a nanometric aperture. It applies a voltage and measures the ionic current flowing through the pipette above the sample in the buffer solution: the recorded current represents the feedback signal to measure the topography of the sample. This project aims to characterize a state of the art high-speed SICM to enable time-resolved live cell imaging, and do the live cell imaging on human primary keratinocytes to study the related disease. - Biomedical Engineering, Electrical and Electronic Engineering, Information, Computing and Communication Sciences, Manufacturing Engineering, Mechanical Engineering, Nanotechnology
- Master Thesis
| Metal-halide perovskite solar cells are promising candidates for the next generation of photovoltaic devices, owing to their high power conversion efficiency (PCE), low cost, and light-weight. These perovskites display broad band-gap tunability, making them ideal for use in tandem solar cells, where multiple perovskite absorber layers with different band-gaps have been used to achieve efficiencies beyond the single-junction limit. However, despite the high performances displayed by all-perovskite tandem solar cell devices, they typically require bespoke fabrication techniques and are yet to reach commercial viability. Slot-die coating and doctor-blade coating offer promising routes for large scale industrial-style fabrication of these devices; it can be used to coat flexible substrates with high throughput roll-to-roll processing over large areas. However, formulation of new perovskite inks and optimisation of the coating parameters is needed to achieve the high-uniformity films required for solar cells.
This thesis will focus on the development of uniform perovskite layers on flexible substrates via scalable coating techniques, for the fabrication of solar cells with high efficiency and stability. This work will lay a solid foundation for the development of industrial scalable methods for upscaling of both perovskite single-junction and tandem solar cells.
- Chemistry, Manufacturing Engineering, Materials Engineering, Physics
- Master Thesis
| The reintegration of individuals who have experienced accidents is at the heart of our efforts. A severe car accident or a workplace accident, can profoundly change a person's life. Such tragic events often result in serious injuries, such as severed limbs, and are classified as "polytrauma." At our lab, we are working to mitigate the consequences of such severe accidents. Using an innovative perfusion machine, we try to keep severed limbs alive outside the body for up to four days. This time window provides the foundation for successfully retransplanting the limb to a stabilized polytrauma patient. - Biomedical Engineering, Mechanical and Industrial Engineering
- ETH Zurich (ETHZ), Master Thesis
| If you are interested in the synthesis of nanoparticles, then you are in the right place!
Project Description: The project is centered on the microwave-assisted synthesis of tungsten oxides and the characterization of their plasmonic properties. More specifically, the effect of reaction parameters (e.g. reaction temperature, time and pressure, reactants’ concentration, …) on the nanoparticles’ structure, morphology, and optical properties will be investigated. The main characterization techniques will be UV-vis and powder-XRD spectroscopy, together with electron microscopy (SEM, TEM, …) but others will be employed based on need.
Environment: You will work in a friendly group, where helping one another is valued and cherished.
Supervision style: I will actively teach you how to synthesize and characterize materials. You will also be directly supported throughout the whole project (meaning you will not be left completely alone, and a second explanation can always be given). At the same time, it’s expected that after an introductory period you will be able to work more autonomously and give your contribution to the project.
- Ceramics, Inorganic Chemistry
- Master Thesis
| The goal of this project is to develop an image-based analysis method that enables timely evaluations. - Chemical Engineering, Computer Software, Image Processing, Interdisciplinary Engineering, Manufacturing Engineering, Materials Engineering, Mechanical and Industrial Engineering
- Bachelor Thesis, Master Thesis, Semester Project
| The goal of this project is to develop an analytical method that will enable even small material samples to be tested for their suitability for the extrusion process. - CAD/CAM Systems, Chemical Engineering, Food Engineering, Food Processing, Materials Engineering, Mechanical and Industrial Engineering
- Bachelor Thesis, Master Thesis, Semester Project
| Based on pre-study, the aim of this new thesis project is to continue the research work and further improve the die design, fabricate new die variants using AM, and experimentally test them onsite at the facilities of Planted. - CAD/CAM Systems, Chemical Engineering, Food Engineering, Food Processing, Materials Engineering, Mechanical and Industrial Engineering
- Bachelor Thesis, Master Thesis, Semester Project
| This master thesis project focuses on the development of algorithms to compensate for the motion of the patient while performing direct fabrication of an implant upon the anatomy. The main objective is to obtain a constant linear velocity onto the wound using a robotic arm, while accounting for the motions of the printing substrate. - Engineering and Technology, Medical and Health Sciences
- Master Thesis
|
|