Search for public opportunitiesRegister now and browse all open positions. It's free!Profit from a great search interface and directly apply to the position of your choice. SiROP - Excellence in Science! Profit from a great search interface and directly apply to the position of your choice. SiROP - Excellence in Science! Notify me when new projects of my interest are advertized!You define what you are interested in and we will send you an Email when a new project matches your criteria, it's that easy. You define what you are interested in and we will send you an Email when a new project matches your criteria, it's that easy. Results |
---|
The aim of this project is to develop a database, app- and web-interface for the X-ray micro-fabrication team at PSI and ETHZ to track realized pieces, fabrication protocols and characterization of the products. - Database Management, Interfaces and Presentation
- Internship, Master Thesis
| Black carbon (BC) is a critical component of atmospheric aerosols, with significant implications for climate change, air quality, and public health. Affordable monitoring of black carbon is essential for advancing research and policy in under-monitored settings. Currently, commercial black carbon monitors are expensive, limiting their accessibility and deployment. Open-source black carbon monitors offer a promising alternative, providing a low-cost and customizable solution. However, existing open-source black carbon monitors typically measure light absorption at only a single wavelength, which restricts their ability to differentiate between BC from various sources.
A previous master’s student conducted an extensive literature review on the components required to develop a low-cost black carbon monitor and conducted a preliminary cost analysis. This proposal seeks to build on that foundational research by developing a low-cost, dual-wavelength black carbon monitor in the laboratory. - Environmental Engineering, Mechanical and Industrial Engineering
- ETH for Development (ETH4D) (ETHZ), Master Thesis
| The increasing integration of distributed renewable energy sources into electric power grids has highlighted the critical need for demand-side energy flexibility to balance intermittent power generation and ensure grid stability. Buildings, as major energy consumers, present a promising source of flexibility by adjusting their energy consumption to support grid requirements while maintaining occupants' thermal comfort. To achieve this, each building must manage its room temperatures to minimize cost while adhering to technical and operational constraints, as well as fulfilling flexibility provisions. Our preliminary studies indicate that reinforcement learning (RL) is a promising control strategy that can effectively meet these objectives \cite{svetozarevic2022data}. However, in practice, aggregators often prefer to provide flexibility targets to groups of buildings rather than to individual units, making direct implementation of RL-based control challenging.
This project aims to develop a mechanism for distributing flexibility provisions from a central system to individual buildings within a designated group. The goal is to allocate flexibility efficiently while maximizing social and economic welfare across all buildings in the category.
- Engineering and Technology
- Master Thesis
| Global Navigation Satellite System (GNSS) is a well-recognized technique for ionosphere monitoring as additional signal contributions, that GNSS signals experience while traversing the ionosphere, are proportional to the total electron content (TEC). Currently, the operational and publicly available GNSS-based global ionosphere maps are exclusively derived from slant TEC (STEC) acquired using geodetic-grade receivers. GNSS observations that are potentially available at large scale from affordable smart devices, such as smartphones, could form an attractive source of information to improve the spatio-temporal resolution of GNSS data sets that are available for the analysis in this subject. Since 2016, Android phone users can access the raw GNSS data within smartphones. In addition, modern smartphones can track nowadays dual-frequency multi-GNSS signals, which makes extraction of carrier-phase-based VTEC possible. The Space Geodesy group at ETH Zurich initialized a crowdsourcing campaign in March 2022 for collecting smartphone observations from interested participants. Up to now, several TBs of smartphone GNSS data has been collected globally, which provides a great opportunity to study the potential of ionosphere modelling using smartphones. - Earth Sciences, Geodesy
- ETH Zurich (ETHZ), Master Thesis
| Very Long Baseline Interferometry (VLBI) is versatile space geodetic technique, measuring radiation from extragalactic radio sources. VLBI supports a wide range of applications, including the determination of the terrestrial and celestial reference frames, measurements of the full set of Earth orientation parameters, and the determination of geophysical models. Due to its observation principle, VLBI observations have to be actively planned and organized between the radio telescopes.
In recent years, a dramatic growth in the number of satellites emitting radio frequencies can be seen. Most notably is the Starlink system, with more than five thousand satellites being in orbit already. These satellite mega-constellations threaten VLBI observations since their emitted artificial radio signals interferes with the natural radio signal emitted from the extragalactic radio sources, especially if the satellite is aligned with the observed radio source. So far, no active measures are in place to avoid VLBI observations in such cases. - Earth Sciences, Engineering and Technology
- ETH Zurich (ETHZ), Master Thesis
| To provide the geodetic infrastructure necessary for monitoring the Earth system and for Global Change research, an end-to-end redesign of the current geodetic VLBI operations called the VLBI Global Observing System (VGOS) is underway.
In this framework, new radio telescopes are constructed worldwide. These new telescopes form an independent network that has to be linked to the legacy station network that already has a decade-long observing history.
The Geodetic Observatory Wettzell is equipped with three radio telescopes, one 20-meter large legacy antenna that has been operational since 1983 and has contributed the most VLBI measurements worldwide, as well as two new 13-meter large VGOS-style telescopes. By using specially designed VLBI observation sessions between these three telescopes, it is possible to calculate the local baselines between the telescopes with highest accuracy, helping to link the legacy network to the VGOS network. - Earth Sciences, Geodesy
- Bachelor Thesis, ETH Zurich (ETHZ)
| In this project, you will investigate the use of event-based cameras for vision-based landing on celestial bodies such as Mars or the Moon. - Engineering and Technology
- Master Thesis
| The ionosphere causes delays in radio signals, measured by Vertical Total Electron Content (VTEC). This project replaces the least squares (LSQ) algorithm with a Kalman Filter (KF) for more accurate and adaptable VTEC estimation from VLBI data under dynamic ionospheric conditions. - Earth Sciences, Geodesy
- ETH Zurich (ETHZ), Master Thesis, Semester Project
| This project aims to develop a machine learning framework for detecting landfalling atmospheric rivers by using GNSS-derived zenith wet delays. The goal is to explore the feasibility and effectiveness of GNSS data for atmospheric river detection, potentially providing an additional, valuable tool for monitoring and prediction. - Earth Sciences, Geodesy
- ETH Zurich (ETHZ), Master Thesis, Semester Project
| Thanks to dedicated space missions, such as SRTM and TanDEM-X, and the thorough processing of their observations, DEMs are generally available for all parts of the world with consistent accuracy and resolution. Furthermore, regional models for areas such as Europe or Switzerland are available, often derived from photogrammetry and dedicated radar flights. The absolute vertical error is typically reported to range from 1 m to 10 m. However, local errors can vary significantly depending on data restrictions, data collection methods, processing techniques, and local topographic conditions. - Earth Sciences, Geodesy
- Bachelor Thesis, ETH Zurich (ETHZ)
|
|